Skip to main content
Log in

ABA and sucrose co-regulate strawberry fruit ripening and show inhibition of glycolysis

  • Original Article
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Abscisic acid (ABA) and sucrose play an important role in strawberry fruit ripening, but how ABA and sucrose co-regulate this ripening progress remains unclear. The intention of this study was to examine the effect of ABA and sucrose on strawberry fruit ripening and to evaluate the ABA/sucrose interaction mechanism on the strawberry fruit ripening process. Here, we report that there is an acute synergistic effect between ABA and sucrose in accelerating strawberry fruit ripening. The time frame of fruit development and ripening was shortened after the application of ABA, sucrose, and ABA + sucrose, but most of the major quality parameters in treated-ripe fruit, including fruit weight, total soluble solids, anthocyanin, ascorbic acid, the total phenolic content, lightness (L*), chroma (C*), and hue angle () values were not affected. Meanwhile, the endogenous ABA and sucrose levels, and the expression of ABA and sucrose signaling genes and ripening-related genes, such as NCED1, NCED2, SnRK2.2, SuSy, MYB5, CEL1, and CEL2, was all significantly enhanced by ABA or sucrose treatment alone, but in particular, by the ABA + sucrose treatment. Therefore, improving the ripening regulation efficiency is one synergetic action of ABA/sucrose. Another synergetic action of ABA/sucrose shows that a short inhibition of glycolysis occurs during accelerated strawberry ripening. ABA and sucrose can induce higher accumulation of H2O2, leading to a transient decrease in glycolysis. Conversely, lower endogenous H2O2 levels caused by reduced glutathione (GSH) treatment resulted in a transient increase in glycolysis while delaying strawberry fruit ripening. Collectively, this study demonstrates that the ABA/sucrose interaction affects the ripening regulation efficiency and shows inhibition of glycolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akihiro T, Mizuno K, Fujimura T (2005) Gene expression of ADP-glucose pyrophosphorylase and starch contents in rice cultured cells are cooperatively regulated by sucrose and ABA. Plant Cell Physiol 46:937–946

    Article  CAS  PubMed  Google Scholar 

  • Almeida JRM, D’amico E, Preuss A, Carbone F, Vos CHR, Deiml B, Fabiennemourgues PG, Fischer TC, Bovy AG, Martens S, Rosati C (2007) Characterization of major enzymes and genes involved in flavonoid and proanthocyanidin biosynthesis during fruit development in strawberry (Fragaria × ananassa). Arch Biochem Biophys 465:61–71

    Article  CAS  PubMed  Google Scholar 

  • Anthon GE, Barrett DM (2003) Modified method for the determination of pyruvic acid with dinitrophenylhydrazine in the assessment of onion pungency. J Sci Food Agric 83:1210–1213

    Article  CAS  Google Scholar 

  • Arenas-Huertero F, Arroyo A, Zhou L, Sheen J, León P (2000) Analysis of Arabidopsis glucose insensitive mutants, gin5 and gin6, reveals a central role of the plant hormone ABA in the regulation of plant vegetative development by sugar. Genes Dev 14:2085–2096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ayub RA, Bosetto L, Galvão CW, Etto RM, Inaba J, Lopes PZ (2016) Abscisic acid involvement on expression of related gene and phytochemicals during ripening in strawberry fruit Fragaria × ananassa cv. Camino Real. Sci Hortic 203:178–184

    Article  CAS  Google Scholar 

  • Bedhomme M, Adamo M, Marchand CH, Couturier J, Rouhier N, Lemare SD, Zaffagnini M, Trost P (2012) Glutathionylation of cytosolic glyceraldehyde-3-phosphate dehydrogenase from the model plant Arabidopsis thaliana is reversed by both glutaredoxins and thioredoxins in vitro. Biochem J 445:337–347

    Article  CAS  PubMed  Google Scholar 

  • Brady CJ (1987) Fruit ripening. Annu Rev Plant Physiol 38:155–178

    Article  CAS  Google Scholar 

  • Cakir B, Agasse A, Gaillard C, Saumonneau A, Delrot S, Atanassova R (2003) A grape ASR protein involved in sugar and abscisic acid signaling. Plant Cell 15:2165–2180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao JK, Jiang WB (2007) Experiment guidance of postharvest physiology and biochemistry of fruits and vegetables. China Light Industry Press, Beijing, pp 118–120

    Google Scholar 

  • Carbone F, Preuss A, Vos RCHD, D’amico E, Perrotta G, Bovy AG, Martens S, Rosati C (2009) Developmental, genetic and environmental factors affect the expression of flavonoid genes, enzymes and metabolites in strawberry fruits. Plant Cell Environ 32:1117–1131

    Article  CAS  PubMed  Google Scholar 

  • Carrari F, Fernie AR, Iusem ND (2004) Heard it through the grapevine? ABA and sugar cross-talk: the ASR story. Trends Plant Sci 9:57–59

    Article  CAS  PubMed  Google Scholar 

  • Chai YM, Jia HF, Li CL, Dong QH, Shen YY (2011) FaPYR1 is involved in strawberry fruit ripening. J Exp Bot 62:5079–5089

    Article  CAS  PubMed  Google Scholar 

  • Chai YM, Zhang Q, Tian L, Li CL, Xing Y, Qin L, Shen YY (2013) Brassinosteroid is involved in strawberry fruit ripening. Plant Growth Regul 69:63–69

    Article  CAS  Google Scholar 

  • Chang CC, Yang MH, Wen HM, Chern JC (2002) Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J Food Drug Anal 10:178–182

    CAS  Google Scholar 

  • Cheng GW, Breen PJ (1991) Activity of phenylalanine ammonia-lyase (PAL) and concentrations of anthocyanins and phenolics in developing strawberry fruit. J Am Soc Hortic Sci 116:865–869

    Article  CAS  Google Scholar 

  • Cherian S, Figueroa RC, Nair H (2014) ‘Movers and shakers’ in the regulation of fruit ripening: a cross-dissection of climacteric versus non-climacteric fruit. J Exp Bot 65:4705–4722

    Article  CAS  PubMed  Google Scholar 

  • Concha CM, Figueroa NE, Poblete LA, Oñate FA, Schwab W, Figueroa CR (2013) Methyl jasmonate treatment induces changes in fruit ripening by modifying the expression of several ripening genes. Plant Physiol Biochem 70:433–444

    Article  CAS  PubMed  Google Scholar 

  • Finkelsteina RR, Gibson SI (2002) ABA and sugar interactions regulating development: cross-talk or voices in a crowd? Curr Opin Plant Biol 5:26–32

    Article  Google Scholar 

  • Foyer CH, Noctor G (2011) Ascroabte and glutathione: the heart of the redox hub. Plant Physiol 155:2–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gahan PB, Auderset G, Carmignac DF, Greppin H (1987) The relationship between the activities of the pentose phosphate pathway and glycolysis during early stages of floral induction in spinach. Histochemistry 87:289–291

    Article  CAS  PubMed  Google Scholar 

  • Gambetta GA, Matthews MA, Shaghasi TH, Mcelrone AJ, Castellarin SD (2010) Sugar and abscisic acid signaling orthologs are activated at the onset of ripening in grape. Planta 232:219–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ganapathy-Kanniappan S, Geschwind JFH, Kunjithapatham R, Buijs M, Vossen JA, Tchernyshyov I, Cole RN, Syed LH, Rao PP, Ota S, Vali M (2009) Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is pyruvylated during 3-bromopyruvate mediated cancer cell death. Anticancer Res 29:4909–4918

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gechev TS, Hille J (2005) Hydrogen peroxide as a signal controlling plant programmed cell death. J Cell Biol 168:17–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, Palma FD, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo L, Devaiah SP, Narasimhan R, Pan X, Zhang Y, Zhang W, Wang X (2012) Cytosolic glyceraldehyde-3-phosphate dehydrogenases interact with phospholipase Dδ to transduce hydrogen peroxide signals in the Arabidopsis response to stress. Plant Cell 24:2200–2212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han YS (1996) Food chemical experiment guidance. China Agricultural University Press, Beijing

    Google Scholar 

  • Han Y, Dang R, Li J, Jia W (2015) FaSnRK2.6, an ortholog of Open Stomata 1, is a negative regulator of strawberry fruit development and ripening. Plant Physiol 167:3915–3930

    Article  CAS  Google Scholar 

  • Han YL, Chen C, Yan ZM, Li J, Wang YH (2019) The methyl jasmonate accelerates the strawberry fruits ripening process. Sci Hortic 249:250–256

    Article  CAS  Google Scholar 

  • Huang H, Xie S, Xiao Q, Wei B, Zheng L, Wang Y, Cao Y, Zhang X, Long T, Li Y, Hu Y, Yu G, Liu H, Liu Y, Huang Z, Zhang J, Huang Y (2016) Sucrose and ABA regulate starch biosynthesis in maize through a novel transcription factor, ZmEREB156. Sci Rep 6:1–12

    Article  CAS  Google Scholar 

  • Jia HF, Chai YM, Li CL, Lu D, Luo JJ, Qin L, Shen YY (2011) Abscisic acid plays an important role in the regulation of strawberry fruit ripening. Plant Physiol 157:188–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia H, Wang Y, Sun M, Li B, Han Y, Zhao Y, Li X, Ding N, Li C, Ji W, Jia W (2013) Sucrose functions as a signal involved in the regulation of strawberry fruit development and ripening. New Phytol 198:453–465

    Article  CAS  PubMed  Google Scholar 

  • Jia H, Jiu S, Zhang C, Wang C, Tariq P, Liu Z, Wang B, Cui L, Fang J (2016) Abscisic acid and sucrose regulate tomato and strawberry fruit ripening through the abscisic acid-stress-ripening transcription factor. Plant Biotechnol J 14:2045–2065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia H, Xie Z, Wang C, Shangguan L, Qian N, Cui M, Liu Z, Zheng T, Wang M, Fang J (2017) Abscisic acid, sucrose, and auxin coordinately regulate berry ripening process of the Fujiminori grape. Funct Integr Genom 17:441–457

    Article  CAS  Google Scholar 

  • Jiang Y, Joyce DC (2003) ABA effects on ethylene production, PAL activity, anthocyanin and phenolic contents of strawberry fruit. Plant Growth Regul 39:171–174

    Article  Google Scholar 

  • Kim JW, Dang CV (2005) Multifaceted roles of glycolytic enzymes. Trends Biochem Sci 30:142–150

    Article  CAS  PubMed  Google Scholar 

  • Koch KE, Ying Z, Wu Y, Avigne WT (2000) Multiple paths of sugar-sensing and a sugar/oxygen overlap for genes of sucrose and ethanol metabolism. J Exp Bot 51:417–427

    Article  CAS  PubMed  Google Scholar 

  • Kruger NJ, Schaewen AV (2003) The oxidative pentose phosphate pathway: structure and organisation. Curr Opin Plant Biol 6:236–246

    Article  CAS  PubMed  Google Scholar 

  • Krüger A, Grüning NM, Wamelink MMC, Kerick M, Kirpy A, Parkhomchuk D, Bluemlein K, Schweiger M-R, Soldatov A, Lehrach H, Jakobs C, Ralser M (2011) The pentose phosphate pathway is a metabolic redox sensor and regulates transcription during the antioxidant response. Antioxid Redox Sign 15:1–13

    Article  CAS  Google Scholar 

  • Kuehne A, Emmert H, Soehle J, Winnefeld M, Fischer F, Wenck H, Gallinat S, Terstegen L, Lucius R, Hildebrand J, Zamboni N (2015) Acute activation of oxidative pentose phosphate pathway as first-line response to oxidative stress in human skin cells. Mol Cell 59:359–371

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Irfan M, Ghosh S, Chakraborty N, Chakraborty S, Datta A (2016) Fruit ripening mutants reveal cell metabolism and redox state during ripening. Protoplasma 253:581–594

    Article  CAS  PubMed  Google Scholar 

  • Kwak JM, Mori IC, Pei ZM, Leonhardt N, Torres MA, Dangl JL, Bloom RE, Bodde S, Jones JDG, Schroeder JI (2003) NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. EMBO J 22:2623–2633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinform 9:559

    Article  CAS  Google Scholar 

  • Lehmann M, Schwarzländer M, Obata T, Sirikantaramas S, Burow M, Olsen CE, Tohge T, Fricker MD, Møller BL, Fernie AR, Sweetlove LJ, Laxa M (2009) The metabolic response of Arabidopsis roots to oxidative stress is distinct from that of heterotrophic cells in culture and highlights a complex relationship between the levels of transcripts, metabolites, and flux. Mol Plant 2:390–406

    Article  CAS  PubMed  Google Scholar 

  • Li C, Jia H, Chai Y, Shen Y (2011) Abscisic acid perception and signaling transduction in strawberry: a model for non-climacteric fruit ripening. Plant Signal Behav 6:1950–1953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li D, Li L, Luo Z, Mou W, Mao L, Ying T (2015) Comparative transcriptome analysis reveals the influence of abscisic acid on the metabolism of pigments, ascorbic acid and folic acid during strawberry fruit ripening. PLoS ONE 10:1–15

    Google Scholar 

  • Liu DJ, Chen JY, Lu WJ (2011) Expression and regulation of the early auxin-responsive Aux/IAA genes during strawberry fruit development. Mol Biol Rep 38:1187–1193

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−△△Ct method. Methods 25:402–408

    CAS  PubMed  Google Scholar 

  • Loreti E, Povero G, Novi G, Solfanelli C, Alpi A, Perata P (2008) Gibberellins, jasmonate and abscisic acid modulate the sucrose-induced expression of anthocyanin biosynthetic genes in Arabidopsis. New Phytol 179:1004–1016

    Article  CAS  PubMed  Google Scholar 

  • Martínez GA, Chaves AR, Añón MC (1994) Effect of gibberellic acid on ripening of strawberry fruits (Fragaria annanassa Duch.). J Plant Growth Regul 13:87–91

    Article  Google Scholar 

  • Mcguire RG (1992) Reporting of objective color measurements. HortScience 27:1254–1255

    Article  Google Scholar 

  • Merchante C, Vallarino GJ, Osorio S, Aragüez I, Villarreal N, Ariza MT, Martinez GA, Medina-Escobar N, Civello MP, Fernie AR, Botella MA, Valpuesta V (2013) Ethylene is involved in strawberry fruit ripening in an organ-specific manner. J Exp Bot 64:4421–4439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mezzetti B, Landi L, Pandolfini T, Spena A (2004) The defH9-iaaM auxin-synthesizing gene increases plant fecundity and fruit production in strawberry and raspberry. BMC Biotechnol 4:1–10

    Article  Google Scholar 

  • Molan AL, Flanagan J, Wei W, Moughan PJ (2009) Selenium-containing green tea has higher antioxidant and prebiotic activities than regular green tea. Food Chem 114:829–835

    Article  CAS  Google Scholar 

  • Mukkun L, Singh Z (2009) Methyl jasmonate plays a role in fruit ripening of ‘Pajaro’ strawberry through stimulation of ethylene biosynthesis. Sci Hortic 123:5–10

    Article  CAS  Google Scholar 

  • Narayanan KR, Mudge KW, Poovaiah BW (1981) Demonstration of auxin binding to strawberry fruit membranes. Plant Physiol 68:1289–1293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pillet J, Yu HW, Chambers AH, Whitaker VM, Folta KM (2015) Identification of candidate flavonoid pathway genes using transcriptome correlation network analysis in ripe strawberry (Fragaria × ananassa) fruits. J Exp Bot 66:4455–4467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plaxton W (1996) The organization and regulation of plant glycolysis. Annu Rev Plant Physiol Mol Biol 49:185–214

    Article  Google Scholar 

  • Pourcel L, Routaboul JM, Cheynier V, Lepiniec L, Debeaujon I (2007) Flavonoid oxidation in plants: from biochemical properties to physiological functions. Trends Plant Sci 12:29–36

    Article  CAS  PubMed  Google Scholar 

  • Preter GD, Neveu MA, Danhier P, Brisson L, Payen VL, Porporato PE, Jordan BF, Sonveaux P, Gallez B (2016) Inhibition of the pentose phosphate pathway by dichloroacetate unravels a missing link between aerobic glycolysis and cancer cell proliferation. Oncotarget 7:2910–2920

    Article  PubMed  Google Scholar 

  • Ralser M, Wamelink MM, Kowald A, Gerisch B, Heeren G, Struys EA, Klipp E, Jakobs C, Breitenbach M, Lehrach H, Krobitsch S (2007) Dynamic rerouting of the carbohydrate flux is key to counteracting oxidative stress. J Biol 6:1–18

    Article  Google Scholar 

  • Rolland F, Baena-Gonzalez E, Sheen J (2006) Sugar sensing and signaling in plants: conserved and novel mechanisms. Annu Rev Plant Biol 57:675–709

    Article  CAS  PubMed  Google Scholar 

  • Rontein D, Dieuaide-Noubhani M, Dufourc EJ, Raymond P, Rolin D (2002) The metabolic architecture of plant cells stability of central metabolism and flexibility of anabolic pathways during the growth cycle of tomato cells. J Biol Chem 277:43948–43960

    Article  CAS  PubMed  Google Scholar 

  • Rook F, Corke F, Card R, Munz G, Smith C, Bevan MW (2001) Impaired sucrose-induction mutants reveal the modulation of sugar-induced starch biosynthetic gene expression by abscisic acid signalling. Plant J 26:421–433

    Article  CAS  PubMed  Google Scholar 

  • Shen GM, Dou W, Niu JZ, Jiang HB, Yang WJ, Jia FX, Hu F, Cong L, Wang JJ (2011) Transcriptome analysis of the oriental fruit fly (Bactrocera dorsalis). PLoS ONE 6:1–11

    Google Scholar 

  • Sun YY (2007) The effect of nitrogen levels and nitrogen forms on AsA contents and its related metabolic activity in spinach leaves. Zhejiang University, Hangzhou

    Google Scholar 

  • Sun JH, Luo JJ, Tian L, Li CL, Xing Y, Shen YY (2013) New evidence for the role of ethylene in strawberry fruit ripening. J Plant Growth Regul 32:461–470

    Article  CAS  Google Scholar 

  • Trainotti L, Pavanello A, Casadoro G (2005) Different ethylene receptors show an increased expression during the ripening of strawberries: does such an increment imply a role for ethylene in the ripening of these non-climacteric fruits? J Exp Bot 56:2037–2046

    Article  CAS  PubMed  Google Scholar 

  • Wang PT, Song CP (2008) Guard-cell signalling for hydrogen peroxide and abscisic acid. New Phytol 178:703–718

    Article  CAS  PubMed  Google Scholar 

  • Wang QH, Zhao C, Zhang M, Li YZ, Shen YY, Guo JX (2017) Transcriptome analysis around the onset of strawberry fruit ripening uncovers an important role of oxidative phosphorylation in ripening. Sci Rep 7:1–11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu H, Li HH, Chen H, Qi Q, Ding QQ, Xue J, Ding J, Jiang XN, Hou XL, Li Y (2019) Identification and expression analysis of strigolactone biosynthetic and signaling genes reveal strigolactones are involved in fruit development of the woodland strawberry (Fragaria vesca). BMC Plant Biol 19:1–19

    Article  Google Scholar 

  • Yang SS, Zhai QH (2017) Cytosolic GAPDH: a key mediator in redox signal transduction in plants. Biol Plant 61:417–426

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by the National Natural Science Foundation of China (3180817), the Scientific Research Foundation for Returned Overseas Chinese Scholars, the State Education Ministry (332867), Key projects of Sichuan Provincial Education Department (172A0319), and Key projects of Sichuan Provincial Science and Technology Department (2018NZ0126).

Author information

Authors and Affiliations

Authors

Contributions

YL and HT designed the experiments and wrote the manuscript. YL performed most of the experiments and analyzed the results together with Cong Ge. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Ya Luo or Haoru Tang.

Ethics declarations

Conflict of interest

All the authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by Stefan Hohmann.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Y., Ge, C., Ling, Y. et al. ABA and sucrose co-regulate strawberry fruit ripening and show inhibition of glycolysis. Mol Genet Genomics 295, 421–438 (2020). https://doi.org/10.1007/s00438-019-01629-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-019-01629-w

Keywords

Navigation