Bioinformatic prediction of critical genes and pathways involved in longevity in Drosophila melanogaster

  • Jia-qi Li
  • Dan-dan Duan
  • Jian-qin Zhang
  • Yu-zhi Zhou
  • Xue-mei Qin
  • Guan-hua DuEmail author
  • Li GaoEmail author
Original Article


The pursuit of longevity has been the goal of humanity since ancient times. Genetic alterations have been demonstrated to affect lifespan. As increasing numbers of pro-longevity genes and anti-longevity genes have been discovered in Drosophila, screening for functionally important genes among the large number of genes has become difficult. The aim of the present study was to explore critical genes and pathways affecting longevity in Drosophila melanogaster. In this study, 168 genes associated with longevity in D. melanogaster were collected from the Human Ageing Genomic Resources (HAGR) database. Network clustering analysis, network topological analysis, and pathway analysis were integrated to identify key genes and pathways. Quantitative real-time PCR (qRT-PCR) was applied to verify the expression of genes in representative pathways and of predicted genes derived from the gene–gene sub-network. Our results revealed that six key pathways might be associated with longevity, including the longevity-regulating pathway, the peroxisome pathway, the mTOR-signalling pathway, the FOXO-signalling pathway, the AGE-RAGE-signalling pathway in diabetic complications, and the TGF-beta-signalling pathway. Moreover, the results revealed that six key genes in representative pathways, including Cat, Ry, S6k, Sod, Tor, and Tsc1, and the predicted genes Jra, Kay, and Rheb exhibited significant expression changes in ageing D. melanogaster strain w1118 compared to young ones. Overall, our results revealed that six pathways and six key genes might play pivotal roles in regulating longevity, and three interacting genes might be implicated in longevity. The results will not only provide new insight into the mechanisms of longevity, but also provide novel ideas for network-based approaches for longevity-related research.


Drosophila melanogaster Longevity Gene Pathway Network 



This project was supported by the National Natural Science Foundation of China (81603319) and was partly supported by the Youth Science and Technology Research Fund of Shanxi Province (201801D221374), the Postgraduate Education Innovation Project (2018SY008), the Science and Technology Innovation Team of Shanxi Province (201605D131045-18), and the Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province (201705D111008-21).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures were in accordance with the institutional guidelines and ethics for the use and care of laboratory animals and were approved by our Institutional Animal Care and Use Committee (IACUC). This article does not contain any studies with human participants performed by any of the authors.

Supplementary material

438_2019_1589_MOESM1_ESM.docx (32 kb)
Supplementary material 1 (DOCX 31 kb)
438_2019_1589_MOESM2_ESM.docx (15 kb)
Supplementary material 2 (DOCX 14 kb)
438_2019_1589_MOESM3_ESM.docx (18 kb)
Supplementary material 3 (DOCX 18 kb)
438_2019_1589_MOESM4_ESM.xlsx (176 kb)
Supplementary material 4 (XLSX 176 kb)
438_2019_1589_MOESM5_ESM.docx (33 kb)
Supplementary material 5 (DOCX 32 kb)
438_2019_1589_MOESM6_ESM.docx (27 kb)
Supplementary material 6 (DOCX 26 kb)
438_2019_1589_MOESM7_ESM.xlsx (54 kb)
Supplementary material 7 (XLSX 54 kb)


  1. Ali YO, Wilfredo E, Kai R, Zhai RG (2011) Assaying locomotor, learning, and memory deficits in Drosophila models of neurodegeneration. J Vis Exp 11:e2504. Google Scholar
  2. Assenov Y, Ramirez F, Schelhorn SE, Lengauer T, Albrecht M (2008) Computing topological parameters of biological networks. Bioinformatics 24:282–284. CrossRefGoogle Scholar
  3. Bader GD, Hogue CW (2003) An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinform 4:2. CrossRefGoogle Scholar
  4. Basta G (2008) Receptor for advanced glycation endproducts and atherosclerosis: from basic mechanisms to clinical implications. Atherosclerosis 196:9–21. CrossRefGoogle Scholar
  5. Basta G, Schmidt AM, De CR (2004) Advanced glycation end products and vascular inflammation: implications for accelerated atherosclerosis in diabetes. Cardiovasc Res 63:582–592. CrossRefGoogle Scholar
  6. Bauer JH, Goupil S, Garber GB, Helfand SL (2004) An accelerated assay for the identification of lifespan-extending interventions in Drosophila melanogaster. Proc Natl Acad Sci USA 101:12980–12985. CrossRefGoogle Scholar
  7. Baugé C, Girard N, Lhuissier E, Bazille C, Boumediene K (2014) Regulation and role of TGFβ signaling pathway in aging and osteoarthritis joints. Aging Dis 5:394–405. Google Scholar
  8. Beard ME, Holtzman E (1987) Peroxisomes in wild-type and rosy mutant Drosophila melanogaster. Proc Natl Acad Sci USA 84:7433–7437. CrossRefGoogle Scholar
  9. Bier E (2005) Drosophila, the golden bug, emerges as a tool for human genetics. Nat Rev Genet 6:9–23. CrossRefGoogle Scholar
  10. Bindea G, Mlecnik B, Hackl H, Charoentong P, Tosolini M, Kirilovsky A, Fridman WH, Pagès F, Trajanoski Z, Galon J (2009) ClueGO: a Cytoscape plug-into decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 25:1091–1093. CrossRefGoogle Scholar
  11. Biteau B, Karpac J, Hwangbo DS, Jasper H (2011) Regulation of Drosophila lifespan by JNK signaling. Exp Gerontol 46:349–354. CrossRefGoogle Scholar
  12. Brown HL, Kaun KR, Edgar BA (2012) The small GTPase Rheb affects central brain neuronal morphology and memory formation in Drosophila. PLoS One 7:e44888. CrossRefGoogle Scholar
  13. Christian VM, Martijn H, Daniel J, Steffen S, Peer B, Berend S (2003) STRING: a database of predicted functional associations between proteins. Nucleic Acids Res 31:258–261. CrossRefGoogle Scholar
  14. Clancy DJ, Gems D, Harshman LG, Oldham S, Stocker H, Hafen E, Leevers SJ, Partridge L (2001) Extension of life-span by loss of CHICO, a Drosophila insulin receptor substrate protein. Science 292:104–106. CrossRefGoogle Scholar
  15. Coughlan MT, Thorburn DR, Penfold SA, Laskowski A, Harcourt BE, Sourris KC, Tan AL, Fukami K, Thallasbonke V, Nawroth PP (2009) RAGE-induced cytosolic ROS promote mitochondrial superoxide generation in diabetes. J Am Soc Nephrol 20:742–752. CrossRefGoogle Scholar
  16. Creixell P, Reimand J, Haider S, Wu G, Shibata T, Vazquez M, Mustonen V, Gonzalez-Perez A, Pearson J, Sander C, Raphael BJ, Marks DS, Ouellette BFF, Valencia A, Bader GD, Boutros PC, Stuart JM, Linding R, Lopez-Bigas N, Stein LD (2015) Pathway and network analysis of cancer genomes. Nat Methods 12:615–621. CrossRefGoogle Scholar
  17. Egenriether SM, Chow ES, Krauth N, Giebultowicz JM (2015) Accelerated food source location in aging Drosophila. Aging Cell 14:916–918. CrossRefGoogle Scholar
  18. Embar V, Handen A, Ganapathiraju MK (2016) Is the average shortest path length of gene set a reflection of their biological relatedness? J Bioinform Comput Biol. Google Scholar
  19. Fleming JE, Reveillaud I, Niedzwiecki A (1992) Role of oxidative stress in Drosophila aging. Mutat Res 275:267. CrossRefGoogle Scholar
  20. Gao X, Zhang Y, Arrazola P, Hino O, Kobayashi T, Yeung RS, Ru B, Pan D (2002) Tsc tumour suppressor proteins antagonize amino-acid-TOR signalling. Nat Cell Biol 4:699–704. CrossRefGoogle Scholar
  21. Gargano JW, Martin I, Bhandari P, Grotewiel MS (2005) Rapid iterative negative geotaxis (RING): a new method for assessing age-related locomotor decline in Drosophila. Exp Gerontol 40:386–395. CrossRefGoogle Scholar
  22. Giordano CR, Terlecky SR (2012) Peroxisomes, cell senescence, and rates of aging. Biochim Biophys Acta 1822:1358–1362. CrossRefGoogle Scholar
  23. Handu M, Kaduskar B, Ravindranathan R, Soory A, Giri R, Elango VB, Gowda H, Ratnaparkhi GS (2015) SUMO-enriched proteome for Drosophila innate immune response. G3 (Bethesda) 5:2137–2154. CrossRefGoogle Scholar
  24. Harrison DE, Strong R, Sharp ZD, Nelson JF, Astle CM, Flurkey K, Nadon NL, Wilkinson JE, Frenkel K, Carter CS, Pahor M, Javors MA, Fernandez E, Miller RA (2009) Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460:392–395. CrossRefGoogle Scholar
  25. Hwangbo DS, Gershman B, Tu MP, Palmer M, Tatar M (2004) Drosophila dFOXO controls lifespan and regulates insulin signalling in brain and fat body. Nature 429:562–566. CrossRefGoogle Scholar
  26. Johnson TE, Wood WB (1982) Genetic analysis of life-span in Caenorhabditis elegans. Proc Natl Acad Sci USA 79:6603–6607. CrossRefGoogle Scholar
  27. Kaeberlein M, Powers RW 3rd, Steffen KK, Westman EA, Hu D, Dang N, Kerr EO, Kirkland KT, Fields S, Kennedy BK (2005) Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients. Science 310:1193–1196. CrossRefGoogle Scholar
  28. Kapahi P, Zid BM, Harper T, Koslover D, Sapin V, Benzer S (2004) Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway. Curr Biol 14:885–890. CrossRefGoogle Scholar
  29. Kezos JN, Cabral LG, Wong BD, Khou BK, Oh A, Harb JF, Chiem D, Bradley TJ, Mueller LD, Rose MR (2017) Starvation but not locomotion enhances heart robustness in Drosophila. J Insect Physiol 99:8–14. CrossRefGoogle Scholar
  30. Kim YS, Nam HJ, Chung HY, Kim ND, Ji HR, Lee WJ, Arking R, Mi AY (2001) Role of xanthine dehydrogenase and aging on the innate immune response of Drosophila. J Am Aging Assoc 24:187–193. Google Scholar
  31. Kusama S, Ueda R, Suda T, Nishihara S, Matsuura ET (2006) Involvement of Drosophila Sir2-like genes in the regulation of life span. Genes Genet Syst 81:341–348. CrossRefGoogle Scholar
  32. Lee KS, Lee BS, Semnani S, Avanesian A, Um CY, Jeon HJ, Seong KM, Yu K, Min KJ, Jafari M (2010) Curcumin extends life span, improves health span, and modulates the expression of age-associated aging genes in Drosophila melanogaster. Rejuvenation Res 13:561–570. CrossRefGoogle Scholar
  33. Li SS, Zhang ZY, Yang CJ, Lian HY, Cai P (2013) Gene expression and reproductive abilities of male Drosophila melanogaster subjected to ELF–EMF exposure. Mutat Res 758:95–103. CrossRefGoogle Scholar
  34. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−∆∆CT method. Methods 25:402–408. CrossRefGoogle Scholar
  35. Mockett RJ, Bayne AC, Kwong LK, Orr WC, Sohal RS (2003) Ectopic expression of catalase in Drosophila mitochondria increases stress resistance but not longevity. Free Radic Biol Med 34:207–217. CrossRefGoogle Scholar
  36. Monnier V, Iché-Torres M, Rera M, Contremoulins V, Guichard C, Lalevée N, Tricoire H, Perrin L (2012) dJun and Vri/dNFIL3 are major regulators of cardiac aging in Drosophila. PLoS Genet 8:e1003081. CrossRefGoogle Scholar
  37. Nacarelli T, Azar A, Sell C (2015) Aberrant mTOR activation in senescence and aging: a mitochondrial stress response? Exp Gerontol 68:66–70. CrossRefGoogle Scholar
  38. Navrotskaya VV, Oxenkrug G, Vorobyova LI, Summergrad P (2012) Berberine prolongs life span and stimulates locomotor activity of Drosophila melanogaster. Am J Plant Sci 3:1037–1040. CrossRefGoogle Scholar
  39. Nepusz T, Yu H, Paccanaro A (2012) Detecting overlapping protein complexes in protein–protein interaction networks. Nat Methods 9:471–472. CrossRefGoogle Scholar
  40. Orr WC, Sohal RS (1994) Extension of life-span by overexpression of superoxide dismutase and catalase in Drosophila melanogaster. Science 263:1128–1130. CrossRefGoogle Scholar
  41. Passarino G, De Rango F, Montesanto A (2016) Human longevity: genetics or lifestyle? It takes two to tango. Immun Ageing 13:12. CrossRefGoogle Scholar
  42. Patel PH, Tamanoi F (2006) Increased Rheb-TOR signaling enhances sensitivity of the whole organism to oxidative stress. J Cell Sci 119:4285–4292. CrossRefGoogle Scholar
  43. Piperi C, Adamopoulos C, Dalagiorgou G, Diamanti-Kandarakis E, Papavassiliou AG (2012) Crosstalk between advanced glycation and endoplasmic reticulum stress: emerging therapeutic targeting for metabolic diseases. J Clin Endocrinol Metab 97:2231–2242. CrossRefGoogle Scholar
  44. Proshkina EN, Shaposhnikov MV, Sadritdinova AF, Kudryavtseva AV, Moskalev AA (2015) Basic mechanisms of longevity: a case study of Drosophila pro-longevity genes. Ageing Res Rev 24:218–231. CrossRefGoogle Scholar
  45. Reiter LT, Potocki L, Chien S, Gribskov M, Bier E (2001) A systematic analysis of human disease-associated gene sequences in Drosophila melanogaster. Genome Res 11:1114–1125. CrossRefGoogle Scholar
  46. Saucedo LJ, Gao X, Chiarelli DA, Li L, Pan D, Edgar BA (2003) Rheb promotes cell growth as a component of the insulin/TOR signalling network. Nat Cell Biol 5:566–571. CrossRefGoogle Scholar
  47. Selman C, Tullet JMA, Wieser D, Irvine E, Lingard SJ, Choudhury AI, Claret M, Al-Qassab H, Carmignac D, Ramadani F (2009) Ribosomal protein S6 kinase 1 signaling regulates mammalian life span. Science 326:140–144. CrossRefGoogle Scholar
  48. Semba RD, Nicklett EJ, Ferrucci L (2010) Does accumulation of advanced glycation end products contribute to the aging phenotype? J Gerontol A Biol Sci Med Sci 65:963–975. CrossRefGoogle Scholar
  49. Sengupta S, Peterson TR, Sabatini DM (2010) Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress. Mol Cell 40:310–322. CrossRefGoogle Scholar
  50. Shahrestani P, Quach J, Mueller LD, Rose MR (2012) Paradoxical physiological transitions from aging to late life in Drosophila. Rejuvenation Res 15:49–58. CrossRefGoogle Scholar
  51. Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T (2011) Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27:431–432. CrossRefGoogle Scholar
  52. Tacutu R, Thornton D, Johnson E, Budovsky A, Barardo D, Craig T, Diana E, Lehmann G, Toren D, Wang J (2018) Human ageing genomic resources: new and updated databases. Nucleic Acids Res 46:D1083–D1090. CrossRefGoogle Scholar
  53. Taneera J, Lang S, Sharma A, Fadista J, Zhou Y, Ahlqvist E, Jonsson A, Lyssenko V, Vikman P, Hansson O, Parikh H, Korsgren O, Soni A, Krus U, Zhang E, Jing XJ, Esguerra JL, Wollheim CB, Salehi A, Rosengren A, Renstrom E, Groop L (2012) A systems genetics approach identifies genes and pathways for type 2 diabetes in human islets. Cell Metab 16:122–134. CrossRefGoogle Scholar
  54. Tatar M, Kopelman A, Epstein D, Tu MP, Yin CM, Garofalo RS (2001) A mutant Drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function. Science 292:107–110. CrossRefGoogle Scholar
  55. Tatar M, Bartke A, Antebi A (2003) The endocrine regulation of aging by insulin-like signals. Science 299:1346–1351. CrossRefGoogle Scholar
  56. Titorenko VI, Terlecky SR (2011) Peroxisome metabolism and cellular aging. Traffic 12:252–259. CrossRefGoogle Scholar
  57. Upadhyay A, Moss-Taylor L, Kim MJ, Ghosh AC, O’Connor MB (2017) TGF-β family signaling in Drosophila. Cold Spring Harb Perspect Biol 9:a022152. CrossRefGoogle Scholar
  58. Vellai T, Takacs-Vellai K, Zhang Y, Kovacs AL, Orosz L, Müller F (2003) Genetics: influence of TOR kinase on lifespan in C. elegans. Nature 426:620. CrossRefGoogle Scholar
  59. Wanders RJA, Waterham HR (2006) Biochemistry of mammalian peroxisomes revisited. Annu Rev Biochem 75:295–332. CrossRefGoogle Scholar
  60. Wang X, Gulbahce N, Yu H (2011) Network-based methods for human disease gene prediction. Brief Funct Genom 10:280–293. CrossRefGoogle Scholar
  61. Waterson MJ, Chung BY, Harvanek ZM, Ostojic I, Alcedo J, Pletcher SD (2014) Water sensor ppk28 modulates Drosophila lifespan and physiology through AKH signaling. Proc Natl Acad Sci USA 111:8137–8142. CrossRefGoogle Scholar
  62. Weinrich TW, Coyne A, Salt TE, Hogg C, Jeffery G (2017) Improving mitochondrial function significantly reduces metabolic, visual, motor and cognitive decline in aged Drosophila melanogaster. Neurobiol Aging 60:34–43. CrossRefGoogle Scholar
  63. Zou YX, Ruan MH, Luan J, Feng X, Chen S, Chu ZY (2016) Anti-aging effect of riboflavin via endogenous antioxidant in fruit fly Drosophila melanogaster. J Nutr Health Aging 21:1–6. Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Modern Research Center for Traditional Chinese MedicineShanxi UniversityTaiyuanPeople’s Republic of China
  2. 2.College of Chemistry and Chemical EngineeringShanxi UniversityTaiyuanPeople’s Republic of China
  3. 3.Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingPeople’s Republic of China

Personalised recommendations