Abstract
Flowering is a key agronomic trait that directly influences crop yield and quality and serves as a model system for elucidating the molecular basis that controls successful reproduction, adaptation, and diversification of flowering plants. Adequate knowledge of continuous series of expression data from the floral transition to maturation is lacking in Brassica rapa. To unravel the genome expression associated with the development of early small floral buds (< 2 mm; FB2), early large floral buds (2-4 mm; FB4), stamens (STs) and carpels (CPs), transcriptome profiling was carried out with a Br300K oligo microarray. The results showed that at least 6848 known nonredundant genes (30% of the genes of the Br300K) were differentially expressed during the floral transition from vegetative tissues to maturation. Functional annotation of the differentially expressed genes (DEGs) (fold change ≥ 5) by comparison with a close relative, Arabidopsis thaliana, revealed 6552 unigenes (4579 upregulated; 1973 downregulated), including 131 Brassica-specific and 116 functionally known floral Arabidopsis homologs. Additionally, 1723, 236 and 232 DEGs were preferentially expressed in the tissues of STs, FB2, and CPs. These DEGs also included 43 transcription factors, mainly AP2/ERF–ERF, NAC, MADS-MIKC, C2H2, bHLH, and WRKY members. The differential gene expression during flower development induced dramatic changes in activities related to metabolic processes (23.7%), cellular (22.7%) processes, responses to the stimuli (7.5%) and reproduction (1%). A relatively large number of DEGs were observed in STs and were overrepresented by photosynthesis-related activities. Subsequent analysis via semiquantitative RT-PCR, histological analysis performed with in situ hybridization of BrLTP1 and transgenic reporter lines (BrLTP promoter::GUS) of B. rapa ssp. pekinensis supported the spatiotemporal expression patterns. Together, these results suggest that a temporally and spatially regulated process of the selective expression of distinct fractions of the same genome leads to the development of floral organs. Interestingly, most of the differentially expressed floral transcripts were located on chromosomes 3 and 9. This study generated a genome expression atlas of the early floral transition to maturation that represented the flowering regulatory elements of Brassica rapa.
Similar content being viewed by others
References
Amasino RM (2005) Vernalization and flowering time. Curr Opin Biotechnol 16:154–158
Andrés F, Romera-Branchat M, Martínez-Gallegos R, Patel V, Schneeberger K, Jang S, Altmüller J, Nürnberg P, Coupland G (2015) Floral induction in Arabidopsis thaliana by FLOWERING LOCUS T requires direct repression of BLADE-ON-PETIOLE genes by homeodomain protein PENNYWISE. Plant Physiol 169:2187–2199
Bonnema G, Carpio DP, Zhao JJ (2011) Diversity analysis and molecular taxonomy of Brassica vegetable crops. In: Kole C, Sadowski J (eds) Genetics, genomics and breeding of crop plants. Science Publishers, Enfield, NH, pp 81–124
Bouché F, Lobet G, Tocquin P, Périlleux C (2015) FLOR-ID: an interactive database of flowering-time gene networks in Arabidopsis thaliana. Nucleic Acids Res 44:D1167–D1171
Bowman JL, Smyth DR, Meyerowitz EM (1989) Genes directing flower development in Arabidopsis. Plant Cell 1:37–52
Brazel AJ, Ó’Maoiléidigh DS (2019) Photosynthetic activity of reproductive organs. J Exp Bot 70:1737–1754
Cai C, Wang X, Liu B, Wu J, Liang J, Cui Y, Cheng F, Wang X (2017) Brassica rapa Genome 2.0: a reference upgrade through sequence re-assembly and gene re-annotation. Mol Plant 10:649–651
Chen R, Shen LP, Wang DH, Wang FG, Zeng HY, Chen ZS, Peng YB, Lin YN, Tang X, Deng MH, Yao N (2015) A gene expression profiling of early rice stamen development that reveals inhibition of photosynthetic genes by OsMADS58. Mol Plant 8:1069–1089
Covey PA, Subbaiah CC, Parsons RL, Pearce G, Lay FT, Anderson MA, Ryan CA, Bedinger PA (2010) A Pollen-Specific RALF from tomato that regulates pollen tube elongation. Plant Physiol 153:703–707
Dong J, Keller WA, Yan W, Georges F (2004) Gene expression at early stages of Brassica napus seed development as revealed by transcript profiling of seed-abundant cDNAs. Planta 218:483–491
Dong X, Feng H, Xu M, Lee J, Kim YK, Lim YP, Piao Z, Park YD, Ma H, Hur Y (2013) Comprehensive analysis of genic male sterility-related genes in Brassica rapa using a newly developed Br 300 K oligomeric chip. PLoS ONE 8:e72178
Dong X, Yi H, Han CT, Nou IS, Swaraz AM, Hur Y (2016) Genome-wide analysis of genes associated with bolting in heading type Chinese cabbage. Euphytica 212:65–82
Dorca-Fornell C, Gregis V, Grandi V, Coupland G, Colombo L, Kater MM (2011) The Arabidopsis SOC1-like genes AGL42, AGL71 and AGL72 promote flowering in the shoot apical and axillary meristems. Plant J 67:1006–1017
Durán-Medina Y, Serwatowska J, Reyes-Olalde JI et al (2017) The AP2/ERF transcription factor DRNL modulates gynoecium development and affects its response to cytokinin. Front Plant Sci 8:1841
Flagel LE, Wendel JF (2009) Gene duplication and evolutionary novelty in plants. N Phytol 183:557–564
Fornari M, Calvenzani V, Masiero S, Tonelli C, Petroni K (2013) The Arabidopsis NF-YA3 and NF-YA8 genes are functionally redundant and are required in early embryogenesis. PLoS ONE 8:e82043
Fu Y, Zhang Y, Mason A, Lin B, Yu H, Donghui F (2019) NBS-encoding genes in Brassica napus evolved rapidly after allopolyploidization and co-localise with known disease resistance loci. Front Plant Sci 10:26
Futamura N, Kouchi H, Shinohara K (2000) Sites of expression of DnaJ homologs and Hsp70 in male and female flowers of the Japanese Willow Salix gilgiana Seemen. Biosci Biotechnol Biochem 64:2232–2235
Greenup A, Peacock WJ, Dennis ES, Trevaskis B (2009) The molecular biology of seasonal flowering-responses in Arabidopsis and the cereals. Ann Bot 103:1165–1172
He QL, Cui SJ, Gu JL, Zhang H, Wang MX, Zhou Y, Zhang L, Huang MR (2010) Analysis of floral transcription factors from Lycoris longituba. Genomics 96:119–127
Heijmans K, Morel P, Vandenbussche M (2012) MADS-box genes and floral development: the dark side In Posidonia oceanica cadmium induces changes in DNA methylation and chromatin patterning. J Exp Bot 63:5397–5404
Honma T, Goto K (2000) The Arabidopsis floral homeotic gene PISTILLATA is regulated by discrete cis-elements responsive to induction and maintenance signals. Dev Camb Engl 127:2021–2030
Hu YX, Tao YB, Xu ZF (2017) Overexpression of Jatropha Gibberellin 2-oxidase 6 (JcGA2ox6) induces dwarfism and smaller leaves, flowers and fruits in Arabidopsis and Jatropha. Front Plant Sci 8:2103
Huang T, Irish VF (2015) Gene networks controlling petal organogenesis. J Exp Bot 67:61–68
Huang Y, Shi J, Tao Z, Zhang L, Liu Q, Wang X, Yang Q, Liu G, Wang H (2014) Microarray expression analysis of the main inflorescence in Brassica napus. PLoS ONE 9:e102024
Huang F, Wu X, Hou X, Shao S, Liu T (2018) Vernalization can regulate flowering time through microRNA mechanism in Brassica rapa. Physiol Plant 164:204–215
Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907
Jeong J, Choi G (2013) Phytochrome-interacting factors have both shared and distinct biological roles. Mol Cells 35:371–380
Jung HJ, Dong X, Park JI, Thamilarasan SK, Lee SS, Kim YK, Lim YP, Nou IS, Hur Y (2014) Genome-wide transcriptome analysis of two contrasting Brassica rapa doubled haploid lines under cold-stresses using Br 135 K oligomeric chip. PLoS ONE 9:e106069
Kakizaki T, Kato T, Fukino N, Ishida M, Hatakeyama K, Matsumoto S (2011) Identification of quantitative trait loci controlling late bolting in Chinese cabbage (Brassica rapa L.) parental line Nou 6 gou. Breed Sci 61:151–159
Kazan K, Lyons R (2016) The link between flowering time and stress tolerance. J Exp Bot 67:47–60
Kim S-Y, Park B-S, Kwon S-J, Kim JS, Lim M-H, Park Y-D, Kim DY, Suh S-C, Jin YM, Ahn JH, Lee Y-H (2007) Delayed flowering time in Arabidopsis and Brassica rapa by the overexpression of FLOWERING LOCUS C (FLC) homologs isolated from Chinese cabbage (Brassica rapa L. ssp. pekinensis). Plant Cell Rep 26:327–336
Kim C, Park S, Kikuchi S, Kwon S, Park S, Yoon U, Park D, Seol Y, Hahn J, Park S, Kim D (2010) Genetic analysis of gene expression for pigmentation in Chinese cabbage (Brassica rapa). Biochip J 4:123–128
Krizek BA (2011) Auxin regulation of Arabidopsis flower development involves members of the AINTEGUMENTA-LIKE/PLETHORA (AIL/PLT) family. J Exp Bot 62:3311–3319
Krizek BA, Anderson JT (2013) Control of flower size. J Exp Bot 64:1427–1437
Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets brief communication. 33:1870–1874
Kumimoto RW, Zhang Y, Siefers N, Holt BF (2010) NF-YC3, NF-YC4 and NF-YC9 are required for CONSTANS-mediated, photoperiod-dependent flowering in Arabidopsis thaliana. Plant J 63:379–391
Kwun M, Choi Y, Yoon H, Park BS, Kang BJ, Chung YY (2004) Expression analysis of the pistil genes in controlling self-incompatibility of Brassica campestris by CO2 gas using microarray. Mol Cells 18:94–99
Lee SC, Lim MH, Kim JA, Lee SI, Kim JS, Jin M, Kwon SJ, Mun JH, Kim YK, Kim HU, Hur Y (2008) Transcriptome analysis in Brassica rapa under the abiotic stresses using Brassica 24 K oligo microarray. Mol Cells 26:595–605
Li C, Zhou Y, Fan LM (2015) A novel repressor of floral transition, MEE3, an abiotic stress regulated protein, functions as an activator of FLC by binding to its promoter in Arabidopsis. Environ Exp Bot 113:1–10
Li H, Fan Y, Yu J, Chai L, Zhang J, Jiang J, Cui C, Zheng B, Jiang L, Lu K (2018) Genome-wide identification of flowering-time genes in Brassica species and reveals a correlation between selective pressure and expression patterns of vernalization-pathway genes in Brassica napus. Int J Mol Sci 19:3632
Lin Z, Damaris RN, Shi T, Li J, Yang P (2018) Transcriptomic analysis identifies the key genes involved in stamen petaloid in lotus (Nelumbo nucifera). BMC Genom 19:554
Liu F, Xiong X, Wu L, Fu D, Hayward A, Zeng X, Cao Y, Wu Y, Li Y, Wu G (2014) BraLTP1, a lipid transfer protein gene involved in epicuticular wax deposition, cell proliferation and flower development in Brassica napus. PLoS ONE 9:1–12
Paritosh K, Singh AK, Mehrotra AK, Pental D, Burma PK (2018) Identification and characterization of the promoter of a gene expressing mainly in the tapetum tissue of cotton (Gossypium hirsutum L.). Plant Biotechnol Rep 12:377–388
Ryan PT, Ó’Maoiléidigh DS, Drost HG, Kwaśniewska K, Gabel A, Grosse I, Graciet E, Quint M, Wellmer F (2015) Patterns of gene expression during Arabidopsis flower development from the time of initiation to maturation. BMC Genom 16:1–12
Saha G, Park JI, Jung HJ, Ahmed NU, Kayum MA, Chung MY, Hur Y, Cho YG, Watanabe M, Nou IS (2015) Genome-wide identification and characterization of MADS-box family genes related to organ development and stress resistance in Brassica rapa. BMC Genom 16:178
Sankoff D, Zheng C, Zhu Q (2010) The collapse of gene complement following whole genome duplication. BMC Genom 11:313
Shao H, Wang H, Tang X (2015) NAC transcription factors in plant multiple abiotic stress responses: progress and prospects. Front Plant Sci 6:902
Shih C, Hsu W, Peng Y, Yang C (2014) The NAC-like gene ANTHER INDEHISCENCE FACTOR acts as a repressor that controls anther dehiscence by regulating genes in the jasmonate biosynthesis pathway in Arabidopsis. J Exp Bot 65:621–639
Shindo C, Aranzana MJ, Lister C, Baxter C, Nicholls C, Nordborg M, Dean C (2005) Role of FRIGIDA and FLOWERING LOCUS C in determining variation in flowering time of Arabidopsis. Plant Physiol 138:1163–1173
Sobral R, Costa MMR (2017) Role of floral organ identity genes in the development of unisexual flowers of Quercus suber L. Sci Rep 7:10368
Song H, Dong X, Yi H, Nou IS, Hur Y (2016) Differential expression of flowering genes between rapid- and slow-cycling Brassica rapa. Plant Breed Biotechnol 4:145–157
Srikanth A, Schmid M (2011) Regulation of flowering time: all roads lead to Rome. Cell Mol Life Sci 68:2013–2037
Tang H, Lyons E (2012) Unleashing the genome of Brassica rapa. Front. Plant Sci 3:1–12
Tang H, Woodhouse MR, Cheng F, Schnable JC, Pedersen BS, Conant G, Wang X, Freeling M, Pires JC (2012) Altered patterns of fractionation and exon deletions in Brassica rapa support a two-step model of paleohexaploidy. Genetics 190:1563–1574
Theißen G, Melzer R, Rümpler F (2016) MADS-domain transcription factors and the floral quartet model of flower development: linking plant development and evolution. Development 143:3259–3271
Town CD, Cheung F, Maiti R, Crabtree J, Haas BJ, Wortman JR, Hine EE, Althoff R, Arbogast TS, Tallon LJ, Vigouroux M (2006) Comparative genomics of Brassica oleracea and Arabidopsis thaliana reveal gene loss, fragmentation, and dispersal after polyploidy. The Plat Cell 18:1348–1359
Vining KJ, Romanel E, Jones RC, Klocko A, Alves-Ferreira M, Hefer CA, Amarasinghe V, Dharmawardhana P, Naithani S, Ranik M, Wesley-Smith J (2015) The floral transcriptome of Eucalyptus grandis. New Phytol 206:1406–1422
Wang X, Wang H, Wang J, Sun R, Wu J, Liu S, Bai Y, Mun JH, Bancroft I, Cheng F, Huang S (2011) The genome of the mesopolyploid crop species Brassica rapa. Nat Genet 43:1035–1040
Wang X, Wu J, Liang J, Cheng F, Wang X (2015) Brassica database (BRAD) version 2.0: integrating and mining Brassicaceae species genomic resources. Database. https://doi.org/10.1093/database/bav093
Wang X, Song H, Sun M, Zhu Z, Xing G, Xu X, Gao M, Hou L, Li M (2017) Digital gene expression analysis during floral transition in pak choi (Brassica rapa subsp. chinensis). Biotechnol Biotechnol Equip 31:670–678
Wu Y, Ke Y, Wen J, Guo P, Ran F, Wang M, Liu M, Li P, Li J, Du H (2018) Evolution and expression analyses of the MADS-box gene family in Brassica napus. PLoS ONE 13:e0200762
Xiao D, Zhao JJ, Hou XL, Basnet RK, Carpio DP, Zhang NW, Bucher J, Lin K, Cheng F, Wang XW, Bonnema G (2013) The Brassica rapa FLC homologue FLC2 is a key regulator of flowering time, identified through transcriptional co-expression networks. J Exp Bot 64:4503–4516
Xiao D, Shen HR, Zhao JJ, Wei YP, Liu DR, Hou XL, Bonnema G (2019) Genetic dissection of flowering time in Brassica rapa responses to temperature and photoperiod. Plant Sci 280:110–119
Xu M, Hu T, Zhao J, Park MY, Earley KW, Wu G, Yang L, Poethig RS (2016) Developmental functions of miR156-Regulated SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes in Arabidopsis thaliana. PLoS Genet 12:1–29
Zhang L, Wang L, Yang Y, Cui J, Chang F, Wang Y, Ma H (2015) Analysis of Arabidopsis floral transcriptome: detection of new florally expressed genes and expansion of Brassicaceae-specific gene families. Front Plant Sci 5:1–11
Zhang L, Cai X, Wu J, Liu M, Grob S, Cheng F, Liang J, Cai C, Liu Z, Liu B, Wang F (2018) Improved Brassica rapa reference genome by single-molecule sequencing and chromosome conformation capture technologies. Hortic Res. 5:50
Acknowledgements
This study was supported by the Postdoctoral Fellowship Program of the National Institute of Agricultural Science; the Rural Program for Agricultural Science and Technology Development (Project No. PJ01247202); and the Next-Generation Biogreen 21 Program (Project No. PJ01334002), Rural Development Administration, Korea.
Funding
This study was funded by the National Institute of Agricultural Science (Project No. PJ01247202) and Rural Development Administration, Korea (PJ01334002).
Author information
Authors and Affiliations
Contributions
SL, JK and MJ conceived and designed the study. MM and MN conducted the bioinformatics analysis, analyzed the data and drafted the manuscript. MM, and SL submitted the array data to the NCBI Gene Expression Omnibus database. SL, JK, JH, ML and MJ revised the manuscript. All the authors agreed on the contents of the paper.
Corresponding author
Ethics declarations
Conflict of interest
Soo In Lee declares that he has no conflict of interest. Muthusamy Muthusamy declares that he has no conflict of interest. Muhammad Amjad Nawaz declares that he has no conflict of interest. Joon Ki Hong declares that he has no conflict of interest. Myung-Ho Lim declares that he has no conflict of interest. Jin A Kim declares that she has no conflict of interest. Mi-Jeong Jeong declares that she has no conflict of interest.
Data availability statement
The complete set of genome-wide expression data from this study was submitted to the Gene Expression Omnibus database (https://www.ncbi.nlm.nih.gov/geo/) under accession number GSE128989, and the necessary information was also submitted as supplementary data in this article.
Additional information
Communicated by Stefan Hohmann.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Lee, S.I., Muthusamy, M., Nawaz, M.A. et al. Genome-wide analysis of spatiotemporal gene expression patterns during floral organ development in Brassica rapa. Mol Genet Genomics 294, 1403–1420 (2019). https://doi.org/10.1007/s00438-019-01585-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00438-019-01585-5