Population genetics, diversity and forensic characteristics of Tai–Kadai-speaking Bouyei revealed by insertion/deletions markers

  • Guanglin He
  • Zheng Ren
  • Jianxin Guo
  • Fan Zhang
  • Xing Zou
  • Hongling Zhang
  • Qiyan Wang
  • Jingyan Ji
  • Meiqing Yang
  • Ziqian Zhang
  • Jing Zhang
  • Yilizhati Nabijiang
  • Jiang HuangEmail author
  • Chuan-Chao WangEmail author
Original Article


China, inhabited by over 1.3 billion people and known for its genetic, cultural and linguistic diversity, is considered to be indispensable for understanding the association between language families and genetic diversity. In order to get a better understanding of the genetic diversity and forensic characteristics of Tai–Kadai-speaking populations in Southwest China, we genotyped 30 insertion/deletion (InDel) markers and amelogenin in 205 individuals from Tai–Kadai-speaking Bouyei people using the Qiagen Investigator DIPplex amplification kit. We carried out a comprehensive population genetic relationship investigation among 14,303 individuals from 84 worldwide populations based on allele frequency correlation and 4907 genotypes of 30 InDels from 36 populations distributed in all continental or major subregions and seven linguistic phyla in China. Forensic parameters observed show highly polymorphic and informative features for Asians, although the DIPplex kit was developed focusing on Europeans, and indicate that this amplification system is appropriate to forensic personal identification and parentage testing. Patterns of InDel variations revealed by principal components analysis, multidimensional scaling plots, phylogenetic relationship exploration, model-based clustering as well as four pairwise genetic distances (Fst, Nei, Cavalli-Sforza and Reynolds) demonstrate significant genetic differentiation at the continental scale and genetic uniformity in Asia except for Tibeto-Burman and Turkic-speaking populations. Additionally, Tai–Kadai speakers, including Bouyei, Zhuang and Dong, share more genetic ancestry components than with other language speakers, and in general they are genetically very similar to Hmong–Mien-speaking populations. The dataset of Bouyei people generated in the present study is valuable for forensic identification and parentage tests in China.


InDels Population structure Tai–Kadai Forensic genetics Population genetics Linguistic family 


Author contributions

GH wrote the manuscripts. CCW revised the manuscript. HZ, ZR surveyed and collected the samples. HZ, ZR performed extraction of the genomic DNA. GH, JG, FZ, XZ, HZ, QW, JJ, MY, ZZ, JZ and YN performed the analysis of population diversity and genetic structure. CCW, JH initiated and supervised the project.


The work was funded by the National Natural Science Foundation of China (81601650, 31801040), Guizhou Province Engineering Technology Research Center Project (Qian High-Tech of Development and Reform Commission No. [2016]1345), Nanqiang Outstanding Young Talents Program of Xiamen University (X2123302), and Fundamental Research Funds for the Central Universities (ZK1144).

Compliance with ethical standards

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Ethics statement

We followed the recommendations of the “Medical Ethics Committee of Guizhou Medical University, China” in this study. All DNA samples are collected from unrelated donors with written informed consent. The protocol has been approved by the “Medical Ethics Committee of Guizhou Medical University” and in accordance with the Declaration of Helsinki.

Supplementary material

438_2019_1584_MOESM1_ESM.tif (3.6 mb)
Supplementary Fig. S1. Allele frequency differences among 36 populations based on the Insertion allele
438_2019_1584_MOESM2_ESM.tif (346 kb)
Supplementary Fig. S2. The delta K results under the ‘independent allele frequencies’ and ‘LOCPRIOR’ models
438_2019_1584_MOESM3_ESM.tif (1.2 mb)
Supplementary Fig. S3. Genetic relationship among 84 reference populations revealed by allele frequency distribution. (A), PCA results of the two-dimensional plots of the second and third components; (B), Patterns of population genetic relationship inferred from the first and third components
438_2019_1584_MOESM4_ESM.tif (3.6 mb)
Supplementary Fig. S4. A heatmap of the pairwise Nei’s genetic distances among 84 worldwide populations
438_2019_1584_MOESM5_ESM.tif (3.7 mb)
Supplementary Fig. S5. A heatmap of the pairwise Reynolds’s genetic distances among 84 worldwide populations
438_2019_1584_MOESM6_ESM.tif (1.2 mb)
Supplementary Fig. S6. Multidimensional scaling plots between Guizhou Bouyei and 83 worldwide reference populations revealed the corresponding genetic affinity and differences on the basis of the pairwise Nei’s genetic distance
438_2019_1584_MOESM7_ESM.tif (2.6 mb)
Supplementary Fig. S7. Multidimensional scaling plots between Guizhou Bouyei and 83 worldwide reference populations revealed the corresponding genetic relationships based on the pairwise Reynolds genetic distances
438_2019_1584_MOESM8_ESM.tif (1.9 mb)
Supplementary Fig. S8. Neighbor-joining tree reconstructed on the pairwise Nei’s genetic distances
438_2019_1584_MOESM9_ESM.xlsx (59 kb)
Supplementary Table S1. The raw genotype data of 30 InDels included in the Investigator DIPplex amplification system in Guizhou Bouyei population
438_2019_1584_MOESM10_ESM.xlsx (15 kb)
Supplementary Table S2. The p values of Linkage Disequilibrium among 30 InDels included in the Investigator DIPplex amplification system in Guizhou Bouyei ethnic group
438_2019_1584_MOESM11_ESM.xlsx (19 kb)
Supplementary Table S3. The pairwise Fst genetic distances between the Guizhou Bouyei and 35 worldwide populations on the basis of the raw data of 30 InDels included in the Investigator DIPplex amplification system
438_2019_1584_MOESM12_ESM.xlsx (57 kb)
Supplementary Table S4. The Nei’s genetic distances between the Guizhou Bouyei and 83 worldwide populations on the basis of genetic variations of 30 InDels included in the Investigator DIPplex amplification system
438_2019_1584_MOESM13_ESM.xlsx (52 kb)
Supplementary Table S5. The Cavalli-Sforza chord measures between the Guizhou Bouyei and 83 worldwide populations on the basis of genetic variations of 30 InDels included in the Investigator DIPplex amplification system
438_2019_1584_MOESM14_ESM.xlsx (41 kb)
Supplementary Table S6. The Reynolds’s genetic distances between the Guizhou Bouyei and 83 worldwide populations on the basis of genetic variations of 30 InDels included in the Investigator DIPplex amplification system


  1. Akhteruzzaman S, Das SA, Hosen I, Ferdous A (2013) Genetic polymorphism of 30 InDel markers for forensic use in Bangladeshi population. Forensic Sci Int Genet Suppl Ser 4:e348–e349CrossRefGoogle Scholar
  2. Barton L, Newsome SD, Chen FH, Wang H, Guilderson TP, Bettinger RL (2009) Agricultural origins and the isotopic identity of domestication in northern China. Proc Natl Acad Sci USA 106:5523–5528CrossRefGoogle Scholar
  3. Chen S, Ren X, Liu Y, Hu Q, Hong W, Xu A (2007) Human leukocyte antigen class I polymorphism in Miao, Bouyei, and Shui ethnic minorities of Guizhou, China. Hum Immunol 68:928–933CrossRefGoogle Scholar
  4. Chen P, He G, Zou X, Zhang X, Li J, Wang Z, Gao H, Luo L, Zhang Z, Yu J, Han Y (2018) Genetic diversities and phylogenetic analyses of three Chinese main ethnic groups in southwest China: a Y-Chromosomal STR study. Sci Rep 8:15339CrossRefGoogle Scholar
  5. Earl DA, vonHoldt BM (2011) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361CrossRefGoogle Scholar
  6. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620CrossRefGoogle Scholar
  7. Excoffier L, Lischer HE (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567CrossRefGoogle Scholar
  8. Feng Q, Lu Y, Ni X, Yuan K, Yang Y, Yang X, Liu C, Lou H, Ning Z, Wang Y, Lu D, Zhang C, Zhou Y, Shi M, Tian L, Wang X, Zhang X, Li J, Khan A, Guan Y, Tang K, Wang S, Xu S (2017) Genetic history of Xinjiang’s Uyghurs suggests bronze age multiple-way contacts in Eurasia. Mol Biol Evol 34:2572–2582CrossRefGoogle Scholar
  9. Fondevila M, Phillips C, Santos C, Pereira R, Gusmao L, Carracedo A, Butler JM, Lareu MV, Vallone PM (2012) Forensic performance of two insertion-deletion marker assays. Int J Legal Med 126:725–737CrossRefGoogle Scholar
  10. Gouy A, Zieger M (2017) STRAF-A convenient online tool for STR data evaluation in forensic genetics. Forensic Sci Int Genet 30:148–151CrossRefGoogle Scholar
  11. Guo Y, Shen C, Meng H, Dong Q, Kong T, Yang C, Wang H, Jin R, Zhu B (2016) Population differentiations and phylogenetic analysis of Tibet and Qinghai Tibetan groups based on 30 InDel Loci. DNA Cell Biol 35:787–794CrossRefGoogle Scholar
  12. Hansen J (2005) Using SPSS for windows and macintosh: analyzing and understanding data. Am Stat 59:113CrossRefGoogle Scholar
  13. He G, Wang Z, Wang M, Luo T, Liu J, Zhou Y, Gao B, Hou Y (2018a) Forensic ancestry analysis in two Chinese minority populations using massively parallel sequencing of 165 ancestry-informative SNPs. Electrophoresis 39:2732–2742CrossRefGoogle Scholar
  14. He G, Wang Z, Wang M, Zou X, Liu J, Wang S, Hou Y (2018b) Genetic variations and forensic characteristics of Han Chinese population residing in the Pearl River Delta revealed by 23 autosomal STRs. Mol Biol Rep 45:1125–1133CrossRefGoogle Scholar
  15. He G, Wang Z, Zou X, Wang M, Liu J, Wang S, Ye Z, Chen P, Hou Y (2019) Tai-Kadai-speaking Gelao population: forensic features, genetic diversity and population structure. Forensic Sci Int Genet 40:e231–e239CrossRefGoogle Scholar
  16. Hefke G, Davison S, D’Amato ME (2015) Forensic performance of investigator DIPplex InDels genotyping kit in native, immigrant, and admixed populations in South Africa. Electrophoresis 36:3018–3025CrossRefGoogle Scholar
  17. Huang X, Zhou Q, Bin X, Lai S, Lin C, Hu R, Xiao J, Luo D, Li Y, Wei LH, Yeh HY, Chen G, Wang CC (2018) The genetic assimilation in language borrowing inferred from Jing People. Am J Phys Anthropol 166:638–648CrossRefGoogle Scholar
  18. Hudjashov G, Karafet TM, Lawson DJ, Downey S, Savina O, Sudoyo H, Lansing JS, Hammer MF, Cox MP (2017) Complex Patterns of Admixture across the Indonesian Archipelago. Mol Biol Evol 34:2439–2452CrossRefGoogle Scholar
  19. Inacio A, Costa HA, da Silva CV, Ribeiro T, Porto MJ, Santos JC, Igrejas G, Amorim A (2017) Study of InDel genetic markers with forensic and ancestry informative interest in PALOP’s immigrant populations in Lisboa. Int J Legal Med 131:657–660CrossRefGoogle Scholar
  20. Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806CrossRefGoogle Scholar
  21. Kalinowski ST (2002) Evolutionary and statistical properties of three genetic distances. Mol Ecol 11:1263–1273CrossRefGoogle Scholar
  22. Kis Z, Zalan A, Volgyi A, Kozma Z, Domjan L, Pamjav H (2012) Genome deletion and insertion polymorphisms (DIPs) in the Hungarian population. Forensic Sci Int Genet 6:e125–e126CrossRefGoogle Scholar
  23. Kong T, Chen Y, Guo Y, Wei Y, Jin X, Xie T, Mu Y, Dong Q, Wen S, Zhou B, Zhang L, Shen C, Zhu B (2017) Autosomal InDel polymorphisms for population genetic structure and differentiation analysis of Chinese Kazak ethnic group. Oncotarget 8:56651–56658Google Scholar
  24. Kovach WL (2007) MVSP-A multivariate statistical package for windows, ver. 3.1. Kovach Computing Services, Pentraeth, WalesGoogle Scholar
  25. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis Version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874CrossRefGoogle Scholar
  26. Lipson M, Cheronet O, Mallick S, Rohland N, Oxenham M, Pietrusewsky M, Pryce TO, Willis A, Matsumura H, Buckley H, Domett K, Nguyen GH, Trinh HH, Kyaw AA, Win TT, Pradier B, Broomandkhoshbacht N, Candilio F, Changmai P, Fernandes D, Ferry M, Gamarra B, Harney E, Kampuansai J, Kutanan W, Michel M, Novak M, Oppenheimer J, Sirak K, Stewardson K, Zhang Z, Flegontov P, Pinhasi R, Reich D (2018a) Ancient genomes document multiple waves of migration in Southeast Asian prehistory. Science 361:92–95CrossRefGoogle Scholar
  27. Lipson M, Skoglund P, Spriggs M, Valentin F, Bedford S, Shing R, Buckley H, Phillip I, Ward GK, Mallick S, Rohland N, Broomandkhoshbacht N, Cheronet O, Ferry M, Harper TK, Michel M, Oppenheimer J, Sirak K, Stewardson K, Auckland K, Hill AVS, Maitland K, Oppenheimer SJ, Parks T, Robson K, Williams TN, Kennett DJ, Mentzer AJ, Pinhasi R, Reich D (2018b) Population turnover in remote Oceania shortly after initial settlement. Curr Biol 28(1157–1165):e1157CrossRefGoogle Scholar
  28. Lu D, Lou H, Yuan K, Wang X, Wang Y, Zhang C, Lu Y, Yang X, Deng L, Zhou Y, Feng Q, Hu Y, Ding Q, Yang Y, Li S, Jin L, Guan Y, Su B, Kang L, Xu S (2016) Ancestral origins and genetic history of Tibetan highlanders. Am J Hum Genet 99:580–594CrossRefGoogle Scholar
  29. Mallick S, Li H, Lipson M, Mathieson I, Gymrek M, Racimo F, Zhao M, Chennagiri N, Nordenfelt S, Tandon A, Skoglund P, Lazaridis I, Sankararaman S, Fu Q, Rohland N, Renaud G, Erlich Y, Willems T, Gallo C, Spence JP, Song YS, Poletti G, Balloux F, van Driem G, de Knijff P, Romero IG, Jha AR, Behar DM, Bravi CM, Capelli C, Hervig T, Moreno-Estrada A, Posukh OL, Balanovska E, Balanovsky O, Karachanak-Yankova S, Sahakyan H, Toncheva D, Yepiskoposyan L, Tyler-Smith C, Xue Y, Abdullah MS, Ruiz-Linares A, Beall CM, Di Rienzo A, Jeong C, Starikovskaya EB, Metspalu E, Parik J, Villems R, Henn BM, Hodoglugil U, Mahley R, Sajantila A, Stamatoyannopoulos G, Wee JT, Khusainova R, Khusnutdinova E, Litvinov S, Ayodo G, Comas D, Hammer MF, Kivisild T, Klitz W, Winkler CA, Labuda D, Bamshad M, Jorde LB, Tishkoff SA, Watkins WS, Metspalu M, Dryomov S, Sukernik R, Singh L, Thangaraj K, Paabo S, Kelso J, Patterson N, Reich D (2016) The Simons Genome diversity project: 300 genomes from 142 diverse populations. Nature 538:201–206CrossRefGoogle Scholar
  30. Martinez-Cortes G, Garcia-Aceves M, Favela-Mendoza AF, Munoz-Valle JF, Velarde-Felix JS, Rangel-Villalobos H (2016) Forensic parameters of the Investigator DIPplex kit (Qiagen) in six Mexican populations. Int J Legal Med 130:683–685CrossRefGoogle Scholar
  31. McColl H, Racimo F, Vinner L, Demeter F, Gakuhari T, Moreno-Mayar JV, van Driem G, Gram Wilken U, Seguin-Orlando A, de la Fuente Castro C, Wasef S, Shoocongdej R, Souksavatdy V, Sayavongkhamdy T, Saidin MM, Allentoft ME, Sato T, Malaspinas AS, Aghakhanian FA, Korneliussen T, Prohaska A, Margaryan A, de Barros Damgaard P, Kaewsutthi S, Lertrit P, Nguyen TMH, Hung HC, Minh Tran T, Nghia Truong H, Nguyen GH, Shahidan S, Wiradnyana K, Matsumae H, Shigehara N, Yoneda M, Ishida H, Masuyama T, Yamada Y, Tajima A, Shibata H, Toyoda A, Hanihara T, Nakagome S, Deviese T, Bacon AM, Duringer P, Ponche JL, Shackelford L, Patole-Edoumba E, Nguyen AT, Bellina-Pryce B, Galipaud JC, Kinaston R, Buckley H, Pottier C, Rasmussen S, Higham T, Foley RA, Lahr MM, Orlando L, Sikora M, Phipps ME, Oota H, Higham C, Lambert DM, Willerslev E (2018) The prehistoric peopling of Southeast Asia. Science 361:88–92CrossRefGoogle Scholar
  32. Mei T, Shen CM, Liu YS, Meng HT, Zhang YD, Guo YX, Dong Q, Wang XX, Yan JW, Zhu BF, Zhang LP (2016) Population genetic structure analysis and forensic evaluation of Xinjiang Uigur ethnic group on genomic deletion and insertion polymorphisms. Springerplus 5:1087CrossRefGoogle Scholar
  33. Meng HT, Zhang YD, Shen CM, Yuan GL, Yang CH, Jin R, Yan JW, Wang HD, Liu WJ, Jing H, Zhu BF (2015) Genetic polymorphism analyses of 30 InDels in Chinese Xibe ethnic group and its population genetic differentiations with other groups. Sci Rep 5:8260CrossRefGoogle Scholar
  34. Mills RE, Luttig CT, Larkins CE, Beauchamp A, Tsui C, Pittard WS, Devine SE (2006) An initial map of insertion and deletion (INDEL) variation in the human genome. Genome Res 16:1182–1190CrossRefGoogle Scholar
  35. Nei M (1978) The theory of genetic distance and evolution of human races. Jinrui Idengaku Zasshi 23:341–369CrossRefGoogle Scholar
  36. Nielsen R, Akey JM, Jakobsson M, Pritchard JK, Tishkoff S, Willerslev E (2017) Tracing the peopling of the world through genomics. Nature 541:302–310CrossRefGoogle Scholar
  37. Olalde I, Brace S, Allentoft ME, Armit I, Kristiansen K, Booth T, Rohland N, Mallick S, Szecsenyi-Nagy A, Mittnik A, Altena E, Lipson M, Lazaridis I, Harper TK, Patterson N, Broomandkhoshbacht N, Diekmann Y, Faltyskova Z, Fernandes D, Ferry M, Harney E, de Knijff P, Michel M, Oppenheimer J, Stewardson K, Barclay A, Alt KW, Liesau C, Rios P, Blasco C, Miguel JV, Garcia RM, Fernandez AA, Banffy E, Bernabo-Brea M, Billoin D, Bonsall C, Bonsall L, Allen T, Buster L, Carver S, Navarro LC, Craig OE, Cook GT, Cunliffe B, Denaire A, Dinwiddy KE, Dodwell N, Ernee M, Evans C, Kucharik M, Farre JF, Fowler C, Gazenbeek M, Pena RG, Haber-Uriarte M, Haduch E, Hey G, Jowett N, Knowles T, Massy K, Pfrengle S, Lefranc P, Lemercier O, Lefebvre A, Martinez CH, Olmo VG, Ramirez AB, Maurandi JL, Majo T, McKinley JI, McSweeney K, Mende BG, Modi A, Kulcsar G, Kiss V, Czene A, Patay R, Endrodi A, Kohler K, Hajdu T, Szeniczey T, Dani J, Bernert Z, Hoole M, Cheronet O, Keating D, Veleminsky P, Dobes M, Candilio F, Brown F, Fernandez RF, Herrero-Corral AM, Tusa S, Carnieri E, Lentini L, Valenti A, Zanini A, Waddington C, Delibes G, Guerra-Doce E, Neil B, Brittain M, Luke M, Mortimer R, Desideri J, Besse M, Brucken G, Furmanek M, Haluszko A, Mackiewicz M, Rapinski A, Leach S, Soriano I, Lillios KT, Cardoso JL, Pearson MP, Wlodarczak P, Price TD, Prieto P, Rey PJ, Risch R, Rojo Guerra MA, Schmitt A, Serralongue J, Silva AM, Smrcka V, Vergnaud L, Zilhao J, Caramelli D, Higham T, Thomas MG, Kennett DJ, Fokkens H, Heyd V, Sheridan A, Sjogren KG, Stockhammer PW, Krause J, Pinhasi R, Haak W, Barnes I, Lalueza-Fox C, Reich D (2018) The Beaker phenomenon and the genomic transformation of northwest Europe. Nature 555:190–196CrossRefGoogle Scholar
  38. Pagani L, Lawson DJ, Jagoda E, Morseburg A, Eriksson A, Mitt M, Clemente F, Hudjashov G, DeGiorgio M, Saag L, Wall JD, Cardona A, Magi R, Wilson Sayres MA, Kaewert S, Inchley C, Scheib CL, Jarve M, Karmin M, Jacobs GS, Antao T, Iliescu FM, Kushniarevich A, Ayub Q, Tyler-Smith C, Xue Y, Yunusbayev B, Tambets K, Mallick CB, Saag L, Pocheshkhova E, Andriadze G, Muller C, Westaway MC, Lambert DM, Zoraqi G, Turdikulova S, Dalimova D, Sabitov Z, Sultana GNN, Lachance J, Tishkoff S, Momynaliev K, Isakova J, Damba LD, Gubina M, Nymadawa P, Evseeva I, Atramentova L, Utevska O, Ricaut FX, Brucato N, Sudoyo H, Letellier T, Cox MP, Barashkov NA, Skaro V, Mulahasanovic L, Primorac D, Sahakyan H, Mormina M, Eichstaedt CA, Lichman DV, Abdullah S, Chaubey G, Wee JTS, Mihailov E, Karunas A, Litvinov S, Khusainova R, Ekomasova N, Akhmetova V, Khidiyatova I, Marjanovic D, Yepiskoposyan L, Behar DM, Balanovska E, Metspalu A, Derenko M, Malyarchuk B, Voevoda M, Fedorova SA, Osipova LP, Lahr MM, Gerbault P, Leavesley M, Migliano AB, Petraglia M, Balanovsky O, Khusnutdinova EK, Metspalu E, Thomas MG, Manica A, Nielsen R, Villems R, Willerslev E, Kivisild T, Metspalu M (2016) Genomic analyses inform on migration events during the peopling of Eurasia. Nature 538:238–242CrossRefGoogle Scholar
  39. Phillips C (2015) Forensic genetic analysis of bio-geographical ancestry. Forensic Sci Int Genet 18:49–65CrossRefGoogle Scholar
  40. Poulsen L, Farzad MS, Borsting C, Tomas C, Pereira V, Morling N (2015) Population and forensic data for three sets of forensic genetic markers in four ethnic groups from Iran: Persians, Lurs, Kurds and Azeris. Forensic Sci Int Genet 17:43–46CrossRefGoogle Scholar
  41. Ren Z, Zhang H, Liu Y, Wang Q, Wang J, Huang J (2018) Population genetic data of 22 autosomal STRs in Guizhou Bouyei population, Southwestern China. Forensic Sci Int Genet 33:e11–e12CrossRefGoogle Scholar
  42. Reynolds J, Weir BS, Cockerham CC (1983) Estimation of the coancestry coefficient: basis for a short-term genetic distance. Genetics 105:767–779Google Scholar
  43. Rosenberg NA (2004) DISTRUCT: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138CrossRefGoogle Scholar
  44. Shen C, Zhu B, Yao T, Li Z, Zhang Y, Yan J, Wang B, Bie X, Tai F (2016) A 30-InDel assay for genetic variation and population structure analysis of Chinese Tujia group. Sci Rep 6:36842CrossRefGoogle Scholar
  45. Siska V, Jones ER, Jeon S, Bhak Y, Kim HM, Cho YS, Kim H, Lee K, Veselovskaya E, Balueva T, Gallego-Llorente M, Hofreiter M, Bradley DG, Eriksson A, Pinhasi R, Bhak J, Manica A (2017) Genome-wide data from two early Neolithic East Asian individuals dating to 7700 years ago. Sci Adv 3:e1601877CrossRefGoogle Scholar
  46. Su B, Xiao JH, Underhill P, Deka R, Zhang WL, Akey J, Huang W, Shen D, Lu D, Luo JC, Chu JY, Tan JZ, Shen PD, Davis R, Cavalli-Sforza L, Chakraborty R, Xiong MM, Du RF, Oefner P, Chen Z, Jin L (1999) Y-chromosome evidence for a northward migration of modern humans into eastern Asia during the last Ice Age. Am J Hum Genet 65:1718–1724CrossRefGoogle Scholar
  47. Sudmant PH, Rausch T, Gardner EJ, Handsaker RE, Abyzov A, Huddleston J, Zhang Y, Ye K, Jun G, Fritz MH, Konkel MK, Malhotra A, Stutz AM, Shi X, Casale FP, Chen J, Hormozdiari F, Dayama G, Chen K, Malig M, Chaisson MJP, Walter K, Meiers S, Kashin S, Garrison E, Auton A, Lam HYK, Mu XJ, Alkan C, Antaki D, Bae T, Cerveira E, Chines P, Chong Z, Clarke L, Dal E, Ding L, Emery S, Fan X, Gujral M, Kahveci F, Kidd JM, Kong Y, Lameijer EW, McCarthy S, Flicek P, Gibbs RA, Marth G, Mason CE, Menelaou A, Muzny DM, Nelson BJ, Noor A, Parrish NF, Pendleton M, Quitadamo A, Raeder B, Schadt EE, Romanovitch M, Schlattl A, Sebra R, Shabalin AA, Untergasser A, Walker JA, Wang M, Yu F, Zhang C, Zhang J, Zheng-Bradley X, Zhou W, Zichner T, Sebat J, Batzer MA, McCarroll SA, Genomes Project C, Mills RE, Gerstein MB, Bashir A, Stegle O, Devine SE, Lee C, Eichler EE, Korbel JO (2015) An integrated map of structural variation in 2504 human genomes. Nature 526:75–81CrossRefGoogle Scholar
  48. Sun K, Ye Y, Luo T, Hou Y (2016) Multi-InDel analysis for ancestry inference of sub-populations in China. Sci Rep 6:39797CrossRefGoogle Scholar
  49. Tambets K, Yunusbayev B, Hudjashov G, Ilumae AM, Rootsi S, Honkola T, Vesakoski O, Atkinson Q, Skoglund P, Kushniarevich A, Litvinov S, Reidla M, Metspalu E, Saag L, Rantanen T, Karmin M, Parik J, Zhadanov SI, Gubina M, Damba LD, Bermisheva M, Reisberg T, Dibirova K, Evseeva I, Nelis M, Klovins J, Metspalu A, Esko T, Balanovsky O, Balanovska E, Khusnutdinova EK, Osipova LP, Voevoda M, Villems R, Kivisild T, Metspalu M (2018) Genes reveal traces of common recent demographic history for most of the Uralic-speaking populations. Genome Biol 19:139CrossRefGoogle Scholar
  50. Wang Z, Zhang S, Zhao S, Hu Z, Sun K, Li C (2014) Population genetics of 30 insertion-deletion polymorphisms in two Chinese populations using Qiagen Investigator(R) DIPplex kit. Forensic Sci Int Genet 11:e12–e14CrossRefGoogle Scholar
  51. Weber JL, David D, Heil J, Fan Y, Zhao C, Marth G (2002) Human diallelic insertion/deletion polymorphisms. Am J Hum Genet 71:854–862CrossRefGoogle Scholar
  52. Xie T, Guo Y, Chen L, Fang Y, Tai Y, Zhou Y, Qiu P, Zhu B (2018) A set of autosomal multiple InDel markers for forensic application and population genetic analysis in the Chinese Xinjiang Hui group. Forensic Sci Int Genet 35:1–8CrossRefGoogle Scholar
  53. Xu S, Jin L (2008) A genome-wide analysis of admixture in Uyghurs and a high-density admixture map for disease-gene discovery. Am J Hum Genet 83:322–336CrossRefGoogle Scholar
  54. Xu S, Huang W, Qian J, Jin L (2008) Analysis of genomic admixture in Uyghur and its implication in mapping strategy. Am J Hum Genet 82:883–894CrossRefGoogle Scholar
  55. Yang X, Wan Z, Perry L, Lu H, Wang Q, Zhao C, Li J, Xie F, Yu J, Cui T, Wang T, Li M, Ge Q (2012) Early millet use in northern China. Proc Natl Acad Sci USA 109:3726–3730CrossRefGoogle Scholar
  56. Yang MA, Gao X, Theunert C, Tong H, Aximu-Petri A, Nickel B, Slatkin M, Meyer M, Paabo S, Kelso J, Fu Q (2017) 40,000-year-Old Individual from Asia Provides insight into early population structure in Eurasia. Curr Biol 27(3202–3208):e3209Google Scholar
  57. Yunusbayev B, Metspalu M, Metspalu E, Valeev A, Litvinov S, Valiev R, Akhmetova V, Balanovska E, Balanovsky O, Turdikulova S, Dalimova D, Nymadawa P, Bahmanimehr A, Sahakyan H, Tambets K, Fedorova S, Barashkov N, Khidiyatova I, Mihailov E, Khusainova R, Damba L, Derenko M, Malyarchuk B, Osipova L, Voevoda M, Yepiskoposyan L, Kivisild T, Khusnutdinova E, Villems R (2015) The genetic legacy of the expansion of Turkic-speaking nomads across Eurasia. PLoS Genet 11:e1005068CrossRefGoogle Scholar
  58. Zhang YD, Shen CM, Jin R, Li YN, Wang B, Ma LX, Meng HT, Yan JW, Dan Wang H, Yang ZL, Zhu BF (2015) Forensic evaluation and population genetic study of 30 insertion/deletion polymorphisms in a Chinese Yi group. Electrophoresis 36:1196–1201CrossRefGoogle Scholar
  59. Zhang S, Zhu Q, Chen X, Zhao Y, Zhao X, Yang Y, Gao Z, Fang T, Wang Y, Zhang J (2018) Forensic applicability of multi-allelic InDels with mononucleotide homopolymer structures. Electrophoresis 39:2136–2143CrossRefGoogle Scholar
  60. Zhao X, Chen X, Zhao Y, Zhang S, Gao Z, Yang Y, Wang Y, Zhang J (2018) Construction and forensic genetic characterization of 11 autosomal haplotypes consisting of 22 tri-allelic InDels. Forensic Sci Int Genet 34:71–80CrossRefGoogle Scholar
  61. Zhu B, Lan Q, Guo Y, Xie T, Fang Y, Jin X, Cui W, Chen C, Zhou Y, Li X (2018) Population genetic diversity and clustering analysis for Chinese Dongxiang group with 30 autosomal InDel loci simultaneously analyzed. Front Genet 9:279CrossRefGoogle Scholar
  62. Zou X, Wang Z, He G, Wang M, Su Y, Liu J, Chen P, Wang S, Gao B, Li Z, Hou Y (2018) Population genetic diversity and phylogenetic characteristics for high-altitude adaptive kham Tibetan revealed by DNATyperTM 19 amplification system. Front Genet 9:630CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Guanglin He
    • 1
    • 2
  • Zheng Ren
    • 3
  • Jianxin Guo
    • 2
  • Fan Zhang
    • 3
  • Xing Zou
    • 1
  • Hongling Zhang
    • 3
  • Qiyan Wang
    • 3
  • Jingyan Ji
    • 3
  • Meiqing Yang
    • 3
  • Ziqian Zhang
    • 2
  • Jing Zhang
    • 2
  • Yilizhati Nabijiang
    • 2
  • Jiang Huang
    • 3
    Email author
  • Chuan-Chao Wang
    • 2
    Email author
  1. 1.Institute of Forensic Medicine, West China School of Basic Science and Forensic MedicineSichuan UniversityChengduChina
  2. 2.Department of Anthropology and Ethnology, Institute of AnthropologyXiamen UniversityXiamenChina
  3. 3.Department of Forensic MedicineGuizhou Medical UniversityGuiyangChina

Personalised recommendations