Abstract
Ploidy difference between wild Arachis species and cultivated genotypes hinder transfer of useful alleles for agronomically important traits. To overcome this genetic barrier, two synthetic tetraploids, viz., ISATGR 1212 (A. duranensis ICG 8123 × A. ipaensis ICG 8206) and ISATGR 265-5A (A. kempff-mercadoi ICG 8164 × A. hoehnei ICG 8190), were used to generate two advanced backcross (AB) populations. The AB-populations, namely, AB-pop1 (ICGV 91114 × ISATGR 1212) and AB-pop2, (ICGV 87846 × ISATGR 265-5A) were genotyped with DArT and SSR markers. Genetic maps were constructed for AB-pop1 and AB-pop2 populations with 258 loci (1415.7 cM map length and map density of 5.5 cM/loci) and 1043 loci (1500.8 cM map length with map density of 1.4 cM/loci), respectively. Genetic analysis identified large number of wild segments in the population and provided a good source of diversity in these populations. Phenotyping of these two populations identified several introgression lines with good agronomic, oil quality, and disease resistance traits. Quantitative trait locus (QTL) analysis showed that the wild genomic segments contributed favourable alleles for foliar disease resistance while cultivated genomic segments mostly contributed favourable alleles for oil quality and yield component traits. These populations, after achieving higher stability, will be useful resource for genetic mapping and QTL discovery for wild species segments in addition to using population progenies in breeding program for diversifying the gene pool of cultivated groundnut.
This is a preview of subscription content, access via your institution.



References
Abbo S, Lev-Yadunb S, Gopher A (2012) Plant domestication and crop evolution in the near east: on events and processes. Crit Rev Plant Sci 31:241–257
Abbo S, Pinhasi van-Oss R, Gopher A, Saranga Y, Ofner I, Peleg Z (2014) Plant domestication versus crop evolution: a conceptual framework for cereals and grain legumes. Trends Plant Sci. 19:351–360
Basu MS (1995) Peanut bud necrosis disease: activities in the Indian national programme. In: Buiel AAM, Parlevliet JE and Lenne JM (eds) Recent studies on peanut bud necrosis disease, International Crops Research Institute for the Semi-Arid Tropics, Patancheru, pp. 61–63
Bertioli DJ, Ozias-Akins P, Chu Y, Dantas KM, Santos SP, Gouvea E, Guimarães PM, Leal-Bertioli SCM, Knapp SJ, Moretzsohn MC (2014a) The use of SNP markers for linkage mapping in diploid and tetraploid peanuts. G3 4:89–96
Bertioli DJ, Araujo ACG, Nielen S, Heslop-Harrison P, Guimarães PM, Schwarzacher T, Isobe S, Shirasawa K (2014b) An overview of peanut genome structure. Mallikarjuna N, Varshney RK (eds) In genetics, genomics and breeding of peanuts. Genetics, genomics and breeding of crop plant. CRC Press, Boca Raton, pp 114–138
Bertioli DJ, Cannon SB, Froenicke L, Huang G, Farmer AD, Cannon EKS, Liu X, Gao D, Clevenger J, Dash S, Ren L, Moretzsohn MC, Shirasawa K, Wei W, Vidigal B, Abernathy B, Chu Y, Niederhuth CE, Umale P, Araújo ACG, Kozik A, Kim KD, Burow MD, Varshney RK, Wang X, Zhang X, Barkley N, Guimarães PM, Isobe S, Guo B, Liao B, Stalker HT, Schmitz RJ, Scheffler BE, Leal-Bertioli SCM, Xun X, Jackson SA, Michelmore R, Ozias-Akins P (2016) The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut. Nat Genet 48, 438–446
Briggs WH, McMullen MD, Gaut BS, Doebley J (2007) Linkage mapping of domestication loci in a large maize teosinte backcross resource. Genetics 177:1915–1928
Burrow MD, Simpson CE, Starr JL, Paterson AH (2001) Transmission genetics of chromatin from a synthetic amphidiploid to cultivated peanut (Arachis hypogaea L.) broadening the gene pool of a monophyletic polyploid species. Genetics 159:823–837
Burrow MD, Starr JL, Park C, Simpson CE, Paterson AH (2014) Introgression of homeologous quantitative trait loci (QTLs) for resistance to the root-knot nematode [Meloidogyne arenaria (Neal) Chitwood] in an advanced backcross-QTL population of peanut (Arachis hypogaea L.) 34: 393–406
Chen X, Li H, Pandey MK, Yang Q, Wang X, Garg V, Li H, Chi X, Doddamani D, Hong Y, Upadhyaya HD, Guo H, Khan AW, Zhu F, Zhang X, Pan L, Pierce GJ, Zhou G, Krishnamohan KAVS, Chen M, Zhong N, Agarwal G, Li S, Chitikineni A, Zhang G, Sharma S, Chen N, Liu N, Janila P, Li S, Wang M, Wang T, Sun J, Li X, Li C, Wang M, Yu L, Wen S, Singh S, Yang Z, Zhao J, Zhang C, Yu Y, Bi J, Zhang X, Liu Z, Paterson AH, Wang S, Liang X, Varshney RK, Yu S (2016) Draft genome of the peanut A-genome progenitor (Arachis duranensis) provides insights into geocarpy, oil biosynthesis and allergens. Proc Natl Acad Sci (PNAS)-USA 113(24):6785–6790
Doyle JJ and Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19, 11–15.
Fonceka D, Tossim H, Rivallan R, Vignes H, Faye I, Ndoye O, Moretzsohn MC, Bertioli DJ, Glaszmann J, Courtois B, Rami J (2012a) Fostered and left behind alleles in peanut: interspecific QTL mapping reveals footprints of domestication and useful natural variation for breeding. BMC Plant Biol 12:26
Fonceka D, Tossim HA, Rivallan R, Vignes H, Lacut E, Bellis F, Faye I, Ndoye O, Leal-Bertioli SCM, Valls JFM, Bertioli DJ, Glaszmann JC, Courtois B, Rami JF (2012b) Construction of chromosome segment substitution lines in peanut (Arachis hypogaea L.) using a wild synthetic and QTL mapping for plant morphology. PLoS One 7: e48642
Foncéka D, Hodo-Abalo T, Rivallan R, Faye I, Sall MN, Ndoye O, Fávero AP, Bertioli DJ, Glaszmann JC, Courtois B, Rami JF (2009) Genetic mapping of wild introgressions into cultivated peanut: a way toward enlarging the genetic basis of a recent allotetraploid. BMC Plant Biol 9: 103
Garcia GM, Stalker HT, Schroeder E, Kochert G (1996) Identification of RAPD, SCAR, and RFLP markers tightly linked to nematode resistance genes introgressed from Arachis cardenasii into Arachis hypogaea. Genome 39:836–845
Gayathri, M., Shirasawa, K., Varshney, R. K., Pandey, M. K. and Bhat, R. S., 2018, Development of new AhMITE1 markers through genome-wide analysis in peanut (Arachis hypogaea L.). BMC Res Notes. https://doi.org/10.1186/s13104-13017-13121-13108.
Gowda MVC, Motagi BN, Naidu GK, Diddimani SB, Sheshagiri R (2002) GPBD 4: a Spanish bunch groundnut genotype resistant to rust and late leaf spot. Int Arachis Newsl 22:29–32
Grandillo S, Ku HM, Tanksley SD (1999) Identifying the loci responsible for natural variation in fruit size and shape in tomato. Theor Appl Genet 99:978–987
Halward TM, Stalker HT, Kochert G (1993) Development of an RFLP linkage map in diploid peanut species. Theor Appl Genet 87:379–384
Jiao Y, Wickett NJ, Ayyampalayam S, Chanderbali AS, Landherr L, Ralph PE, Tomsho LP, Hu Yi, Liang H, Soltis PS, Soltis DE, Clifton SW, Schlarbaum SE, Schuster SC, Ma H, Leebens-Mack J, dePamphilis CW (2011) Ancestral polyploidy in seed plants and angiosperms. Nature 473: 97
Khera P, Upadhyaya HD, Pandey MK, Roorkiwal M, Sriswathi M, Janila P, Guo Y, McKain MR, Nagy ED, Knapp SJ, Leebens-Mack J, Conner JA, Ozias-Akins P, Varshney RK (2013a) Single nucleotide polymorphism-based genetic diversity in the reference set of peanut (Arachis spp.) by developing and applying cost-effective kompetitive allele specific polymerase chain reaction genotyping assays. The Plant Genome 6(3)
Khera P, Pandey MK, Varshney RK (2013b) Pest and diseases: Old and new threats-modern breeding tools to tailor new crop cultivars. Sécheresse 24:261–273
Kochert G, Stalker HT, Gimenes MA, Galgaro ML, Lopes CR, Moore K (1996) RFLP and cytogenetic evidence on the origin and evolution of allotetraploid domesticated peanut, Arachis hypogaea (Leguminosae). Am J Bot 83:1282–1291
Koinange EMK, Singh SP, Gepts PL (1996) Genetic control of the domestication syndrome in common bean. Crop Sci 36:1037–1045
Koppolu R, Upadhyaya HD, Dwivedi SL, Hoisington DA, Varshney RK (2010) Genetic relationships among seven sections of genus Arachis studied by using SSR markers. BMC Plant Biol 10:15
Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175
Kumari V (2013) Introgression of foliar disease resistance using synthetic amphidiploids and identification of associated QTLs in groundnut (Arachis hypogaea L.). Ph. D. Thesis, University of Agricultural Sciences (UAS), Dharwad, India. http://krishikosh.egranth.ac.in/handle/1/69991.
Kumari V, Gowda MVC, Tasiwal V, Pandey MK, Bhat RS, Mallikarjuna N, Upadhyaya HD, Varshney RK (2014) Diversification of primary gene pool through introgression of resistance allele for foliar diseases from synthetic amphidiploids to cultivated groundnut (Arachis hypogaea L.). Crop J 2 (2–3): 110–119.
Liang X, Zhou G, Hong Y, Chen X, Liu H, Li S (2009) Overview of research progress on peanut (Arachis hypogaea L.) host resistance to aflatoxin contamination and genomics at the Guangdong academy of agricultural sciences. Peanut Sci 36:29–34
Mace ES, Buhariwalla HK, Crouch JH (2003) A high throughput DNA extraction protocol for molecular breeding programs. Plant Mol Biol Rep 21:459a-459 h
Mallikarjuna N, Senthilvel S, and Hoisington D (2011a) Development of synthetic groundnuts (Arachis hypogaea L) to broaden the genetic base of cultivated groundnut. Genetic Resour Crop Evol 58:889–907
Mallikarjuna N, Senapathy S, Jadhav DR, Saxena K, Sharma HC, Upadhyaya HD, Rathore A, Varshney R (2011b) Progress in the utilization of Cajanus platycarpus (Benth.) Maesen in pigeonpea improvement. Plant Breed 130:507–514
Metcalf LP, Schmitz AA, Pelka JK (1996) Rapid preparation of fatty acid esters from lipids for gas chromatographic analysis. Anal Chem 38:514–515
Olsen KM, Wendel JF (2013) A bountiful harvest: genomic insights into crop domestication phenotypes. Annu Rev Plant Biol 64:47–70
Pandey MK, Varshney RK (2018) Groundnut entered post-genome sequencing era: opportunities and challenges in translating genomic information from genome to field. In “Biotechnologies in Crop Improvement Vol 3 (eds SS Gosal and SH Wani), Springer International Publishing, https://doi.org/10.1007/978-3-319-94746-4_9.
Pandey MK, Monyo ES, Ozias-Akins P, Liang X, Guimarães P, Nigam SN, Upadhyaya HD, Janila P, Zhang X, Guo B, Cook DR, Bertioli DJ, Michelmore R, Varshney RK (2012) Advances in Arachis genomics for peanut improvement. J Biotech Adv 30:639–651
Pandey MK, Wang ML, Qiao L, Feng S, Khera P, Wang H, Tonnis B, Barkley NA, Wang J, Holbrook CC, Culbreath AK, Varshney RK, Guo B (2014a) Identification of QTLs associated with oil content and mapping FAD2 genes and their relative contribution to oil quality in peanut (Arachis hypogaea L.) BMC Genet 15:133
Pandey MK, Upadhyaya HD, Rathore A, Vadez V, Sheshshayee MS, Sriswathi M, Govil M, Kumar A, Gowda MVC, Sharma S, F Hamidou, Kumar VA, Khera P, Bhat RS, Khan AW, Singh S, Li H, Monyo E, Nadaf HL, Mukri G, Jackson SA, Guo B, Liang X, Varshney RK (2014b) Genomewide association studies for 50 agronomic traits in peanut using the ‘reference set’ comprising 300 genotypes from 48 countries of the semi-arid tropics of the world. PLoS One 9:e113326
Pandey MK, Roorkiwal M, Singh V, Lingam A, Kudapa H, Thudi M, Chitikineni A, Rathore A, Varshney RK (2016) Emerging genomic tools for legume breeding: current status and future perspectives. Front Plant Sci 7:455
Pandey MK, Agarwal G, Kale SM, Clevenger J, Nayak SN, Sriswathi M, Chitikineni A, Chavarro C, Chen X, Upadhyaya HD, Vishwakarma MK, Leal-Bertioli S, Liang X, Bertioli DJ, Guo B, Jackson SA, Ozias-Akins P, Varshney RK (2017) Development and evaluation of a high density genotyping ‘Axiom_Arachis’ array with 58K SNPs for accelerating genetics and breeding in groundnut. Sci Rep 7:40577.
Paratwagh SA, Bhat RS (2015) Development of superior introgression lines for resistance to foliar diseases and productivity in groundnut (Arachis hypogaea L.). Electron J Plant Breed 6(4):1034–1040.
Sharma S, Upadhyaya HD, Varshney RK and Gowda CLL (2013) Pre-breeding for diversification of primary gene pool and genetic enhancement of grain legumes. Front Plant Sci 4:309
Sharma S, Pandey MK, Sudini HK, Mallikarjuna N, Upadhyaya HD, Varshney RK (2017) Harnessing genetic diversity of wild Arachis species for genetic enhancement of cultivated peanut. Crop Sci 57(1):1–11
Shasidhar Y, Vishwakarma MK, Pandey MK, Janila P, Variath MT, Manohar SS, Nigam SN, Guo B, Varshney RK (2017) Molecular mapping of oil content and fatty acids using dense genetic maps in groundnut. Front Plant Sci 8:794.
Shilpa K, Sunkad G, Kurella S, Marri S, Padmashree K, Jadhav DR, Sahrawat KL, Mallikarjuna N (2013) Biochemical composition and disease resistance in newly synthesized amphidiploid and autotetraploid peanuts. Food Nutr Sci 4:169–176
Shirasawa K, Bertioli DJ, Varshney RK, Moretzsohn MC, Leal-Bertioli SC, Thudi M, Pandey MK, Rami JF, Foncéka D, Gowda MV, Qin H, Guo B, Hong Y, Liang X, Hirakawa H, Tabata S, Isobe S (2013) Integrated consensus map of cultivated peanut and wild relatives reveals structures of the A and B genomes of Arachis and divergence of the legume genomes. DNA Res 20:173–84
Simpson CE (1991) Pathways for introgression of pest resistance into Arachis hypogaea L. Peanut Sci 18:22–26
Stalker HT (2013) Peanut. In: Singh M, Upadhyaya HD, Bisht IS (eds). Genetic and genomic resources of grain legume improvement. 203–235
Subbarao PV, Subrahmanyam P, Reddy PM (1990) A modified nine point disease scale for assessment of rust and late leaf spot of groundnut. 2nd International Congress of French Phytopathological Society, 28–30 November 1990, Montpellier, p. 25.
Sunkad G, Kenchanagoudar PV, Naragund VB (2001) Identification of sources for field resistance to peanut bud necrosis disease in groundnut. Karnataka J Agric Sci 15:646–648
Sweeney M, McCouch S (2007) The complex history of the domestication of rice. Ann Bot 100:951–957
Tanksley SD, Nelson JC (1996) Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor Appl Genet 92:191–203
Van Ooijen JW, Voorrips RE (2001) JoinMap 3.0, software for the calculation of genetic linkage maps. Plant Research International, Wageningen, The Netherlands
Varshney RK, Nayak SN, May GD, Jackson SA (2009a) Next-generation sequencing technologies and their implications for crop genetics and breeding. Trends Biotechnol 27: 522–530
Varshney RK, Bertioli DJ, Moretzsohn MC, Vadez V, Krishnamurthy L, Aruna R, Nigam SN, Moss BJ, Seetha K, Ravi K, He G, Knapp SJ, Hoisington DA (2009b) The first SSR-based genetic linkage map for cultivated groundnut (Arachis hypogaea L.). Theor. Appl. Genet 118:729–739
Varshney RK, Thudi M, May GD, Jackson SA (2010) Legume genomics and breeding. Plant Breed Rev 33:257–304
Varshney RK, Murali Mohan S, Gaur PM, Gangarao NVPR, Pandey MK, Bohra A, Sawargaonkar SL, Chitikineni A, Kimurto PK, Janila P, Saxena KB, Fikre A, Sharma M, Rathore A, Pratap A, Tripathi S, Datta S, Chaturvedi SK, Mallikarjuna N, Anuradha G, Babbar A, Choudhary AK, Mhase MB, Bharadwaj Ch, Mannur DM, Harer PN, Guo B, Liang X, Nadarajan N, Gowda CLL (2013) Achievements and prospects of genomics-assisted breeding in three legume crops of the semi-arid tropics. Biotech Adv 31:1120–1134
Varshney RK, Pandey MK, Janila P, Nigam SN, Sudini H, Gowda MV, Sriswathi M, Radhakrishnan T, Manohar SS, Nagesh P (2014) Marker-assisted introgression of a QTL region to improve rust resistance in three elite and popular varieties of peanut (Arachis hypogaea L.). Theor Appl Genet 127:1771–1781
Vishwakarma MK, Pandey MK, Shasidhar Y, Manohar SS, Nagesh P, Janila P, Varshney RK (2016) Identification of two major QTLs for fresh seed dormancy using the DArT and DArT-seq based genetic map in Spanish type peanuts. Plant Breed 135(3):367–375
Vishwakarma MK, Kale SM, Sriswathi M, Naresh T, Shasidhar Y, Garg V, Pandey MK, Varshney RK (2017a) Genome-wide discovery and deployment of insertions and deletions markers provided greater insights on species, genomes, and sections relationships in the genus Arachis. Front Plant Sci 8:2064
Vishwakarma MK, Nayak SN, Guo B, Wan L, Liao B, Varshney RK, Pandey MK (2017b) Classical and molecular approaches for mapping of genes and quantitative trait loci in peanut (Arachis hypogaea L.). In: RK Varshney, MK Pandey, N Puppala (eds) The peanut genome. ISBN:978-3-319-63935-2; 93–116
Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J. Hered. 93:77–78
Wang S, Basten CJ, Zeng ZB (2012) Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC. (http://statgen.ncsu.edu/qtlcart/WQTLCart.htm)
Wang H, Pandey MK, Qiao L, Qin H, Culbreath AK, He G, Varshney RK, Guo B (2013) Genetic mapping and QTL analysis for disease resistance using F2 and F5 generation-based genetic maps derived from Tifrunner × GT-C20 in peanut (Arachis hypogaea L.). Plant Genome 6:3
Wang ML, Khera P, Pandey MK, Wang H, Qiao L, Feng S, Tonnis B, Barkley NA, Pinnow D, Holbrook CC, Culbreath AK, Varshney RK, Guo B (2015) Genetic mapping of QTLs controlling fatty acids provided insights into the genetic control of fatty acid synthesis pathway in peanut (Arachis hypogaea L.) PLoS One 10:e0119454
Zhao C, Qiu J, Agarwal G, Wang J, Ren X, Xia H, Guo B, Ma C, Wan S, Bertioli DJ, Varshney RK, Pandey MK, Wang X (2017) Genome-wide discovery of microsatellite markers from diploid progenitor species, Arachis duranensis and A. ipaensis, and their application in cultivated peanut (A. hypogaea). Front Plant Sci 8:1209
Zhou X, Xia Y, Ren X, Chen Y, Huang L, Huang S, Liao B, Lei Y, Yan L, Jiang H (2014) Construction of a SNP-based genetic linkage map in cultivated peanut based on large scale marker development using next-generation double-digest restriction-site-associated DNA sequencing (ddRADseq). BMC Genom 15:351
Acknowledgements
We acknowledge the help and support from researchers of University of Agricultural Sciences- Dharwad and University of Agricultural Sciences-Raichur in conducting part of disease screening experiment. Funding support from Bill & Melinda Gates Foundation (Tropics Legumes I, II, and III) is greatly acknowledged. This work has been undertaken as a part of the CGIAR Research Program on Grain Legumes and Dryland Cereals (GLDC). ICRISAT is a member of CGIAR Consortium.
Author information
Authors and Affiliations
Contributions
RKV conceived experiment. RKV, MKP, and NM designed and supervised the experiments. MKP, MS, MR, PJ, SS, KS, NM, and HS performed the experiment. PK, MKP, RKV, and BG analyzed the data. PK, MKP, and RKV wrote the manuscript.
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Khera, P., Pandey, M.K., Mallikarjuna, N. et al. Genetic imprints of domestication for disease resistance, oil quality, and yield component traits in groundnut (Arachis hypogaea L.). Mol Genet Genomics 294, 365–378 (2019). https://doi.org/10.1007/s00438-018-1511-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00438-018-1511-9
Keywords
- DArT markers
- Genetic map
- Trait mapping
- Introgression lines
- Wild crop relatives
- Groundnut