Skip to main content
Log in

Construction of a highly efficient display system for baculovirus and its application on multigene co-display

  • Original Article
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

The classical baculovirus display system (BDS) has often recruited fields including gene delivery, gene therapy, and the genetic engineering of vaccines, as it is capable of presenting foreign polypeptides on the membranes of recombinant baculovirus through a transmembrane protein. However, classical BDS’s high cost, complicated operation, low display efficiency and its inability to simultaneously display multiple gene products impede its practicality. In this study, we present a novel and highly efficient display system based on ires-dependent gp64 for rescuing gp64-null Bacmid of baculovirus construction without affecting the viral replication cycle, which we name the baculovirus multigene display system (BMDS). Laser scanning confocal microscopy demonstrated that eGFP, eYFP, and mCherry were translocated on the membrane of Spodoptera frugiperda 9 cell successfully as expected. Western blot analysis further confirmed the presence of the fluorescent proteins on the budded, mature viral particles. The results showed the display efficiency of target gene on cell surface is fourfold that of classical BDS. In addition, a recombinant baculovirus displaying three kinds of fluorescent proteins simultaneously was constructed, thereby demonstrating the effectiveness of BMDS as a co-display system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adam MA, Ramesh N, Miller AD, Osborne WR (1991) Internal initiation of translation in retroviral vectors carrying picornavirus 5′ nontranslated regions. J Virol 65(9):4985–4990

    PubMed  PubMed Central  CAS  Google Scholar 

  • Berger I, Fitzgerald DJ, Richmond TJ (2004) Baculovirus expression system for heterologous multiprotein complexes. Nat Biotechnol 22(12):1583–1587

    Article  PubMed  CAS  Google Scholar 

  • Boublik Y, Di Bonito P, Jones IM (1995) Eukaryotic virus display: engineering the major surface glycoprotein of the Autographa californica nuclear polyhedrosis virus (AcNPV) for the presentation of foreign proteins on the virus surface. Biotechnology 13(10):1079–1084

    Article  PubMed  CAS  Google Scholar 

  • Chapple SD, Jones IM (2002) Non-polar distribution of green fluorescent protein on the surface of Autographa californica nucleopolyhedrovirus using a heterologous membrane anchor. J Biotechnol 95(3):269–275

    Article  PubMed  CAS  Google Scholar 

  • Chen L, Xia YH, Pan ZS, Zhang CY (2007) Expression and functional characterization of classical swine fever virus E(rns) protein. Protein Expr Purif 55(2):379–387

    Article  PubMed  CAS  Google Scholar 

  • Cherepanov PP, Wackernagel W (1995) Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. Gene 158(1):9–14

    Article  PubMed  CAS  Google Scholar 

  • Cheshenko N, Krougliak N, Eisensmith RC, Krougliak VA (2001) A novel system for the production of fully deleted adenovirus vectors that does not require helper adenovirus. Gene Ther 8(11):846–854

    Article  PubMed  CAS  Google Scholar 

  • Davies AH (1994) Current methods for manipulating baculoviruses. Biotechnology 12(1):47–50

    PubMed  CAS  Google Scholar 

  • Ghattas IR, Sanes JR, Majors JE (1991) The encephalomyocarditis virus internal ribosome entry site allows efficient coexpression of two genes from a recombinant provirus in cultured cells and in embryos. Mol Cell Biol 11(12):5848–5859

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hu YC (2005) Baculovirus as a highly efficient expression vector in insect and mammalian cells. Acta Pharmacol Sin 26(4):405–416

    Article  PubMed  CAS  Google Scholar 

  • Hulst MM, Himes G, Newbigin E, Moormann RJ (1994) Glycoprotein E2 of classical swine fever virus: expression in insect cells and identification as a ribonuclease. Virology 200(2):558–565

    Article  PubMed  CAS  Google Scholar 

  • Jang SK, Krausslich HG, Nicklin MJ, Duke GM, Palmenberg AC, Wimmer E (1988) A segment of the 5′ nontranslated region of encephalomyocarditis virus RNA directs internal entry of ribosomes during in vitro translation. J Virol 62(8):2636–2643

    PubMed  PubMed Central  CAS  Google Scholar 

  • Jang SK, Davies MV, Kaufman RJ, Wimmer E (1989) Initiation of protein synthesis by internal entry of ribosomes into the 5′ nontranslated region of encephalomyocarditis virus RNA in vivo. J Virol 63(4):1651–1660

    PubMed  PubMed Central  CAS  Google Scholar 

  • Kitagawa Y, Tani H, Limn CK, Matsunaga TM, Moriishi K, Matsuura Y (2005) Ligand-directed gene targeting to mammalian cells by pseudotype baculoviruses. J Virol 79(6):3639–3652

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kukkonen SP, Airenne KJ, Marjomaki V, Laitinen OH, Lehtolainen P, Kankaanpaa P, Mahonen AJ, Raty JK, Nordlund HR, Oker-Blom C, Kulomaa MS, Yla-Herttuala S (2003) Baculovirus capsid display: a novel tool for transduction imaging. Mol Ther 8(5):853–862

    Article  PubMed  CAS  Google Scholar 

  • Lin YH, Lee LH, Shih WL, Hu YC, Liu HJ (2008) Baculovirus surface display of σC and σB proteins of avian reovirus and immunogenicity of the displayed proteins in a mouse model. Vaccine 26(50):6361–6367

    Article  PubMed  CAS  Google Scholar 

  • Mizuguchi H, Xu Z, Ishii-Watabe A, Uchida E, Hayakawa T (2000) IRES-dependent second gene expression is significantly lower than cap-dependent first gene expression in a bicistronic vector. Mol Ther 1(4):376–382

    Article  PubMed  CAS  Google Scholar 

  • Monsma SA, Oomens AG, Blissard GW (1996) The GP64 envelope fusion protein is an essential baculovirus protein required for cell-to-cell transmission of infection. J Virol 70(7):4607–4616

    PubMed  PubMed Central  CAS  Google Scholar 

  • Motohashi T, Shimojima T, Fukagawa T, Maenaka K, Park EY (2005) Efficient large-scale protein production of larvae and pupae of silkworm by Bombyx mori nuclear polyhedrosis virus bacmid system. Biochem Biophys Res Commun 326(3):564–569

    Article  PubMed  CAS  Google Scholar 

  • Mountford PS, Smith AG (1995) Internal ribosome entry sites and dicistronic RNAs in mammalian transgenesis. Trends Genet 11(5):179–184

    Article  PubMed  CAS  Google Scholar 

  • O’Reilly DR (1997) Use of baculovirus expression vectors. Methods Mol Biol 62:235–246

    PubMed  Google Scholar 

  • Oker-Blom C, Airenne KJ, Grabherr R (2003) Baculovirus display strategies: Emerging tools for eukaryotic libraries and gene delivery. Brief Funct Genom 2(3):244–253

    Article  CAS  Google Scholar 

  • Oomens AG, Blissard GW (1999) Requirement for GP64 to drive efficient budding of Autographa californica multicapsid nucleopolyhedrovirus. Virology 254(2):297–314

    Article  PubMed  CAS  Google Scholar 

  • Pelletier J, Sonenberg N (1988) Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature 334(6180):320–325

    Article  PubMed  CAS  Google Scholar 

  • Peralta A, Maroniche GA, Alfonso V, Molinari P, Taboga O (2013) VP1 protein of Foot-and-mouth disease virus (FMDV) impairs baculovirus surface display. Virus Res 175(1):87–90

    Article  PubMed  CAS  Google Scholar 

  • Roldao A, Oliveira R, Carrondo MJ, Alves PM (2009) Error assessment in recombinant baculovirus titration: evaluation of different methods. J Virol Methods 159(1):69–80

    Article  PubMed  CAS  Google Scholar 

  • Sandig V, Hofmann C, Steinert S, Jennings G, Schlag P, Strauss M (1996) Gene transfer into hepatocytes and human liver tissue by baculovirus vectors. Hum Gene Ther 7(16):1937–1945

    Article  PubMed  CAS  Google Scholar 

  • Shoji I, Aizaki H, Tani H, Ishii K, Chiba T, Saito I, Miyamura T, Matsuura Y (1997) Efficient gene transfer into various mammalian cells, including non-hepatic cells, by baculovirus vectors. J Gen Virol 78(Pt 10):2657–2664

    Article  PubMed  CAS  Google Scholar 

  • Sun JC, Zhang EH, Yao LG, Zhang HL, Jin PF (2009) A high efficient method of constructing recombinant Bombyx mori (silkworm) multiple nucleopolyhedrovirus based on zero-background Tn7-mediated transposition in Escherichia coli. Biotechnol Prog 25(2):524–529

    Article  PubMed  CAS  Google Scholar 

  • Tami C, Peralta A, Barbieri R, Berinstein A, Carrillo E, Taboga O (2004) Immunological properties of FMDV-gP64 fusion proteins expressed on SF9 cell and baculovirus surfaces. Vaccine 23(6):840–845

    Article  PubMed  CAS  Google Scholar 

  • Urabe M, Hasumi Y, Ogasawara Y, Matsushita T, Kamoshita N, Nomoto A, Colosi P, Kurtzman GJ, Tobita K, Ozawa K (1997) A novel dicistronic AAV vector using a short IRES segment derived from hepatitis C virus genome. Gene 200(1–2):157–162

    Article  PubMed  CAS  Google Scholar 

  • van Loo ND, Fortunati E, Ehlert E, Rabelink M, Grosveld F, Scholte BJ (2001) Baculovirus infection of nondividing mammalian cells: mechanisms of entry and nuclear transport of capsids. J Virol 75(2):961–970

    Article  PubMed  PubMed Central  Google Scholar 

  • Warming S, Costantino N, Court DL, Jenkins NA, Copeland NG (2005) Simple and highly efficient BAC recombineering using galK selection. Nucleic Acids Res 33(4):e36. https://doi.org/10.1093/nar/gni035

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Whitford M, Stewart S, Kuzio J, Faulkner P (1989) Identification and sequence analysis of a gene encoding gp67, an abundant envelope glycoprotein of the baculovirus Autographa californica nuclear polyhedrosis virus. J Virol 63(3):1393–1399

    PubMed  PubMed Central  CAS  Google Scholar 

  • Xu XG, Liu HJ (2008) Baculovirus surface display of E2 envelope glycoprotein of classical swine fever virus and immunogenicity of the displayed proteins in a mouse model. Vaccine 26(43):5455–5460

    Article  PubMed  CAS  Google Scholar 

  • Xu XG, Chiou MT, Zhang YM, Tong DW, Hu JH, Zhang MT, Liu HJ (2008) Baculovirus surface display of E(rns) envelope glycoprotein of classical swine fever virus. J Virol Methods 153(2):149–155

    Article  PubMed  CAS  Google Scholar 

  • Yang DG, Chung YC, Lai YK, Lai CW, Liu HJ, Hu YC (2007) Avian influenza virus hemagglutinin display on baculovirus envelope: cytoplasmic domain affects virus properties and vaccine potential. Mol Ther 15(5):989–996

    Article  PubMed  CAS  Google Scholar 

  • Yao LG, Liu ZC, Zhang XM, Kan YC, Zhou JJ (2007) A highly efficient method for the generation of a recombinant Bombyx mori nuclear-polyhedrosis-virus Bacmid and large-scale expression of foreign proteins in silkworm (B. mori) larvae. Biotechnol Appl Biochem 48(Pt 1):45–53

    PubMed  CAS  Google Scholar 

  • Yao LG, Sun JC, Xu H, Kan YC, Zhang XM, Yan HC (2010) A novel economic method for high throughput production of recombinant baculovirus by infecting insect cells with Bacmid-containing diminopimelate-auxotrophic Escherichia coli. J Biotechnol 145(1):23–29

    Article  PubMed  CAS  Google Scholar 

  • Yao LG, Wang SS, Su S, Yao N, He J, Peng L, Sun JC (2012) Construction of a baculovirus-silkworm multigene expression system and its application on producing virus-like particles. PLoS One 7(3):e32510. https://doi.org/10.1371/journal.pone.0032510

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yap CC, Ishii K, Aoki Y, Aizaki H, Tani H, Shimizu H, Ueno Y, Miyamura T, Matsuura Y (1997) A hybrid baculovirus-T7 RNA polymerase system for recovery of an infectious virus from cDNA. Virology 231(2):192–200

    Article  PubMed  CAS  Google Scholar 

  • Yoshida S, Kondoh D, Arai E, Matsuoka H, Seki C, Tanaka T, Okada M, Ishii A (2003) Baculovirus virions displaying Plasmodium berghei circumsporozoite protein protect mice against malaria sporozoite infection. Virology 316(1):161–170

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Jonathan Jih (University of California, Los Angeles) for revising the grammar of the manuscript. This study was funded by the National Natural Science Foundation of China (Grant Number 31372373, 31372381), the Natural Science Foundation of Guangdong Province, China (Grant Number 2016A030311018) and Science and Technology Planning Project of Guangzhou, China (Grant Number 201510010276).

Author information

Authors and Affiliations

Authors

Contributions

HZ, LY, and JS coordinated the project. HZ and XW performed the research. HZ and JS wrote the manuscript. LY and JS contributed new methods and improved the manuscript. FR, SZ, LX, and MF performed the data analysis. HZ, LY, and JS interpreted the context of results. All authors have read and approved the manuscript.

Corresponding authors

Correspondence to Lunguang Yao or Jingchen Sun.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by S. Hohmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, H., Wang, X., Ren, F. et al. Construction of a highly efficient display system for baculovirus and its application on multigene co-display. Mol Genet Genomics 293, 1265–1277 (2018). https://doi.org/10.1007/s00438-018-1459-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-018-1459-9

Keywords

Navigation