Skip to main content
Log in

Genome-wide evolutionary characterization and expression analyses of major latex protein (MLP) family genes in Vitis vinifera

  • Original Article
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

The major latex protein/ripening-related protein (MLP/RRP) subfamily is known to be involved in a wide range of biological processes of plant development and various stress responses. However, the biological function of MLP/RRP proteins is still far from being clear and identification of them may provide important clues for understanding their roles. Here, we report a genome-wide evolutionary characterization and gene expression analysis of the MLP family in European Vitis species. A total of 14 members, was found in the grape genome, all of which are located on chromosome 1, where are predominantly arranged in tandem clusters. We have noticed, most surprisingly, promoter-sharing by several non-identical but highly similar gene members to a greater extent than expected by chance. Synteny analysis between the grape and Arabidopsis thaliana genomes suggested that 3 grape MLP genes arose before the divergence of the two species. Phylogenetic analysis provided further insights into the evolutionary relationship between the genes, as well as their putative functions, and tissue-specific expression analysis suggested distinct biological roles for different members. Our expression data suggested a couple of candidate genes involved in abiotic stresses and phytohormone responses. The present work provides new insight into the evolution and regulation of Vitis MLP genes, which represent targets for future studies and inclusion in tolerance-related molecular breeding programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Baker SS, Wilhelm KS, Thomashow MF (1994) The 5′-region of Arabidopsis thaliana cor15a has cis-acting elements that confer cold-, drought- and ABA-regulated gene expression. Plant Mol Biol 24(5):701–713

    Article  PubMed  CAS  Google Scholar 

  • Biais B, Krisa S, Cluzet S, Da Costa G, Waffo-Teguo P, Mérillon J-M, Richard T (2017) Antioxidant and cytoprotective activities of grapevine stilbenes. J Agric Food Chem 65(24):4952–4960

    Article  PubMed  CAS  Google Scholar 

  • Cannon SB, Mitra A, Baumgarten A, Young ND, May G (2004) The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol 4(1):10

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheadle C, Vawter MP, Freed WJ, Becker KG (2003) Analysis of microarray data using Z score transformation. J Mol Diagn 5(2):73–81

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen J-Y, Dai X-F (2010) Cloning and characterization of the Gossypium hirsutum major latex protein gene and functional analysis in Arabidopsis thaliana. Planta 231(4):861–873

    Article  PubMed  CAS  Google Scholar 

  • Chin CS, Peluso P, Sedlazeck FJ, Nattestad M, Concepcion GT, Clum A, Dunn C, O’Malley R, Figueroabalderas R, Moralescruz A (2016) Phased diploid genome assembly with single-molecule real-time sequencing. Nat Methods 13(12):1050–1054

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chruszcz M, Ciardiello MA, Osinski T, Majorek KA, Giangrieco I, Font J, Breiteneder H, Thalassinos K, Minor W (2013) Structural and bioinformatic analysis of the kiwifruit allergen Act d 11, a member of the family of ripening-related proteins. Mol Immunol 56(4):794–803

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Facchini PJ, Park S-U (2003) Developmental and inducible accumulation of gene transcripts involved in alkaloid biosynthesis in opium poppy. Phytochemistry 64(1):177–186

    Article  PubMed  CAS  Google Scholar 

  • Fasoli M, Dal Santo S, Zenoni S, Tornielli GB, Farina L, Zamboni A, Porceddu A, Venturini L, Bicego M, Murino V (2012) The grapevine expression atlas reveals a deep transcriptome shift driving the entire plant into a maturation program. Plant Cell 24(9):3489–3505

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Freeling M (2009) Bias in plant gene content following different sorts of duplication: tandem, whole-genome, segmental, or by transposition. Annu Rev Plant Biol 60:433–453

    Article  PubMed  CAS  Google Scholar 

  • Griffing LR, Nessler CL (1989) Immunolocalization of the major latex proteins in developing laticifers of opium poppy (Papaver somniferum). J Plant Physiol 134(3):357–363

    Article  Google Scholar 

  • Guo D, Wong WS, Xu WZ, Sun FF, Qing DJ, Li N (2011a) Cis-cinnamic acid-enhanced 1 gene plays a role in regulation of Arabidopsis bolting. Plant Mol Biol 75(4–5):481–495

    Article  PubMed  CAS  Google Scholar 

  • Guo J, Yang X, Weston DJ, Chen JG (2011b) Abscisic acid receptors: past, present and future. J Integr Plant Biol 53(6):469–479

    Article  PubMed  CAS  Google Scholar 

  • Hammondkosack KE, Jones JD (1996) Resistance gene-dependent plant defense responses. Plant Cell 8(10):1773–1791

    Article  CAS  Google Scholar 

  • He Y, Hao Q, Li W, Yan C, Yan N, Yin P (2014) Identification and characterization of ABA receptors in Oryza sativa. PLoS One 9(4):e95246

    Article  PubMed  PubMed Central  Google Scholar 

  • Inui H, Sawada M, Goto J, Yamazaki K, Kodama N, Tsuruta H, Eun H (2013) A major latex-like protein is a key factor in crop contamination by persistent organic pollutants. Plant Physiol 161(4):2128–2135

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jaillon O, Aury J-M, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449(7161):463–467

    Article  PubMed  CAS  Google Scholar 

  • Kambiranda D, Katam R, Basha SM, Siebert S (2013) iTRAQ-based quantitative proteomics of developing and ripening muscadine grape berry. J Proteome Res 13(2):555–569

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kimbrough JM, Salinas-Mondragon R, Boss WF, Brown CS, Sederoff HW (2004) The fast and transient transcriptional network of gravity and mechanical stimulation in the Arabidopsis root apex. Plant Physiol 136(1):2790–2805

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Konstantinidis KT, Tiedje JM (2004) Trends between gene content and genome size in prokaryotic species with larger genomes. Proc Natl Acad Sci USA 101(9):3160–3165

    Article  PubMed  CAS  Google Scholar 

  • Kreps J, Wu Y, Chang H, Zhu T, Wang X, Harper JF (2002) Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiol 130(4):2129–2141

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kuroi T, Nakamoto K (2003) Two different novel cis-acting elements of erd1, a clpA homologous Arabidopsis gene function in induction by dehydration stress and dark-induced senescence. Plant J 33(2):259–270

    Article  Google Scholar 

  • Kutchan TM (2005) A role for intra-and intercellular translocation in natural product biosynthesis. Curr Opin Plant Biol 8(3):292–300

    Article  PubMed  CAS  Google Scholar 

  • Lcvan L, Eavan S (1999) The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiol Mol Plant Pathol 55(2):85–97

    Article  Google Scholar 

  • Lebel S, Schellenbaum P, Walter B, Maillot P (2010) Characterisation of the Vitis vinifera PR10 multigene family. BMC Plant Biol 10(1):184–184

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee EJ, Facchini P (2010) Norcoclaurine synthase is a member of the pathogenesis-related 10/Bet v1 protein family. Plant Cell 22(10):3489

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee O-R, Sathiyaraj G, Kim Y-J, In J-G, Kwon W-S, Kim J-H, Yang D-C (2011) Defense genes induced by pathogens and abiotic stresses in Panax ginseng CA Meyer. J Ginseng Res 35(1):1–11

    Article  CAS  Google Scholar 

  • Litholdo CG, Parker BL, Eamens AL, Larsen MR, Cordwell SJ, Waterhouse PM (2016) Proteomic identification of putative microRNA394 target genes in Arabidopsis thaliana identifies major latex protein family members critical for normal development. Mol Cell Proteom 15(6):2033–2047

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2012) Analysis of relative gene expression data using real-time quantitative PCR and the 2– ∆∆CT method. Methods 25(4):402–408

    Article  CAS  Google Scholar 

  • Lynch M, Conery JS (2003) The origins of genome complexity. Science 302(5649):1401–1404

    Article  PubMed  CAS  Google Scholar 

  • Lytle BL, Song J, de la Cruz NB, Peterson FC, Johnson KA, Bingman CA, Phillips GN, Volkman BF (2009) Structures of two Arabidopsis thaliana major latex proteins represent novel helix-grip folds. Proteins 76(1):237–243

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marković-Housley Z, Degano M, Lamba D, von Roepenack-Lahaye E, Clemens S, Susani M, Ferreira F, Scheiner O, Breiteneder H (2003) Crystal structure of a hypoallergenic isoform of the major birch pollen allergen Bet v 1 and its likely biological function as a plant steroid carrier. J Mol Biol 325(1):123–133

    Article  PubMed  CAS  Google Scholar 

  • Nam Y-W, Tichit L, Leperlier M, Cuerq B, Marty I, Lelièvre J-M (1999) Isolation and characterization of mRNAs differentially expressed during ripening of wild strawberry (Fragaria vesca L.) fruits. Plant Mol Biol 39(3):629–636

    Article  PubMed  CAS  Google Scholar 

  • Nawrot R, Lippmann R, Matros A, Musidlak O, Nowicki G, Mock H-P (2017) Proteomic comparison of Chelidonium majus L. latex in different phases of plant development. Plant Physiol Biochem 112:312–325

    Article  PubMed  CAS  Google Scholar 

  • Nessler CL, Burnett RJ (1992) Organization of the major latex protein gene family in opium poppy. Plant Mol Biol 20(4):749–752

    Article  PubMed  CAS  Google Scholar 

  • Nessler CL, Allen RD, Galewsky S (1985) Identification and characterization of latex-specific proteins in opium poppy. Plant Physiol 79(2):499–504

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nessler CL, Kurz WG, Pelcher LE (1990) Isolation and analysis of the major latex protein genes of opium poppy. Plant Mol Biol 15(6):951–953

    Article  PubMed  CAS  Google Scholar 

  • Niu D-K, Jiang L (2013) Can ENCODE tell us how much junk DNA we carry in our genome? Biochem Biophys Res Commun 430(4):1340–1343

    Article  PubMed  CAS  Google Scholar 

  • Osmark P, Boyle B, Brisson N (1998) Sequential and structural homology between intracellular pathogenesis-related proteins and a group of latex proteins. Plant Mol Biol 38(6):1243–1246

    Article  PubMed  CAS  Google Scholar 

  • Qu Z-L, Wang H-Y, Xia G-X (2005) GhHb1: a nonsymbiotic hemoglobin gene of cotton responsive to infection by Verticillium dahliae. Biochim Biophys Acta 1730(2):103–113

    Article  PubMed  CAS  Google Scholar 

  • Radauer C, Lackner P, Breiteneder H (2008) The Bet v 1 fold: an ancient, versatile scaffold for binding of large, hydrophobic ligands. BMC Evol Biol 8(1):286

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rebeiz M, Posakony JW (2004) GenePalette: a universal software tool for genome sequence visualization and analysis. Dev Biol 271(2):431–438

    Article  PubMed  CAS  Google Scholar 

  • Ruperti B, Bonghi C, Ziliotto F, Pagni S, Rasori A, Varotto S, Tonutti P, Giovannoni JJ, Ramina A (2002) Characterization of a major latex protein (MLP) gene down-regulated by ethylene during peach fruitlet abscission. Plant Sci 163(2):265–272

    Article  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425

    PubMed  CAS  Google Scholar 

  • Siu-Ming Y, Wong Thomas KF, Zhao M, Ping N, Yang W, Yu L (2008) Promoter-sharing by different genes in human genome—CPNE1 and RBM12 gene pair as an example. BMC Genom 9(1):456

    Article  CAS  Google Scholar 

  • Stanley Kim H, Yu Y, Snesrud EC, Moy LP, Linford LD, Haas BJ, Nierman WC, Quackenbush J (2005) Transcriptional divergence of the duplicated oxidative stress-responsive genes in the Arabidopsis genome. Plant J 41(2):212–220

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thompson JD, Gibson T, Higgins DG (2002) Multiple sequence alignment using ClustalW and ClustalX. Curr Protoc Bioinform. https://doi.org/10.1002/0471250953.bi0203s00

    Article  Google Scholar 

  • Van LL, Rep M, Pieterse CM (2006) Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol 44(1):135–162

    Article  CAS  Google Scholar 

  • Venturini L, Ferrarini A, Zenoni S, Tornielli GB, Fasoli M, Dal SS, Minio A, Buson G, Tononi P, Zago ED (2013) De novo transcriptome characterization of Vitis vinifera cv. Corvina unveils varietal diversity. BMC Genom 14(1):41

    Article  CAS  Google Scholar 

  • Verma V, Raju SC, Kapley A, Kalia VC, Daginawala HF, Purohit HJ (2010) Evaluation of genetic and functional diversity of Stenotrophomonas isolates from diverse effluent treatment plants. Bioresour Technol 101(20):7744–7753

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Yang L, Chen X, Ye T, Zhong B, Liu R, Wu Y, Chan Z (2015) Major latex protein-like protein 43 (MLP43) functions as a positive regulator during abscisic acid responses and confers drought tolerance in Arabidopsis thaliana. J Exp Bot 67(1):421–434

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Weid M, Ziegler J, Kutchan TM (2004) The roles of latex and the vascular bundle in morphine biosynthesis in the opium poppy, Papaver somniferum. Proc Natl Acad Sci USA 101(38):13957–13962

    Article  PubMed  CAS  Google Scholar 

  • Wu JM, Wang Z-R, Hsieh T-C, Bruder JL, Zou J-G, Huang Y-Z (2001) Mechanism of cardioprotection by resveratrol, a phenolic antioxidant present in red wine. Int J Mol Med 8(1):3–17

    PubMed  CAS  Google Scholar 

  • Xu W, Li R, Zhang N, Ma F, Jiao Y, Wang Z (2014) Transcriptome profiling of Vitis amurensis, an extremely cold-tolerant Chinese wild Vitis species, reveals candidate genes and events that potentially connected to cold stress. Plant Mol Biol 86(4–5):527–541

    Article  PubMed  CAS  Google Scholar 

  • Yang X, Tuskan GA (2006) Divergence of the Dof gene families in poplar, Arabidopsis, and rice suggests multiple modes of gene evolution after duplication. Plant Physiol 142(3):820–830

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang X, Kalluri UC, Jawdy S, Gunter LE, Yin T, Tschaplinski TJ, Weston DJ, Ranjan P, Tuskan GA (2008) The F-box gene family is expanded in herbaceous annual plants relative to woody perennial plants. Plant Physiol 148(3):1189–1200

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang C-L, Liang S, Wang H-Y, Han L-B, Wang F-X, Cheng H-Q, Wu X-M, Qu Z-L, Wu J-H, Xia G-X (2015) Cotton major latex protein 28 functions as a positive regulator of the ethylene responsive factor 6 in defense against Verticillium dahliae. Mol Plant. 8(3): 399–411

    Article  PubMed  CAS  Google Scholar 

  • Ye N, Jia L, Zhang J (2012) ABA signal in rice under stress conditions. Rice 5(1):1–9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ye CY, Li T, Yin H, Weston DJ, Tuskan GA, Tschaplinski TJ, Yang X (2013) Evolutionary analyses of non-family genes in plants. Plant J 73(5):788–797

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by the Western First-class Discipline Construction Project of Horticulture (Grant Number NXYLXK2017B03), the Major Science and Technology Program of Ningxia Hui Autonomous Region (Grant Number 2016BZ06) and National Natural Science Foundation of China (Grant Number 31560550).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junxiang Zhang or Weirong Xu.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical standards

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by S. Hohmann.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table S1

List of primer-sets of VvMLP genes for qRT-PCR (XLS 23 KB)

Supplementary Table S2

Amino acid identity of MLP gene family between Arabidopsis and V. vinifera cv. Pinot Noir (XLSX 14 KB)

Supplementary Table S3

Amino acid identity between VvMLP gene family (XLSX 10 KB)

Supplementary Table S4

Nucleotide identity of MLP genes between V. vinifera cv. Cabernet Sauvignon (VvcsMLPs) and cv. Pinort Noir (VvpnMLPs) (XLSX 14 KB)

Supplementary Table S5

Promoter sequence identity of MLP genes between V. vinifera cv. Cabernet Sauvignon (VvcsMLPs) and cv. Pinort Noir (VvpnMLPs) (XLSX 11 KB)

Supplementary Table S6

Microarray data of V. vinifera cv. Corvina was retrieved from Grape eFP Browser microarray database (XLS 30 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, N., Li, R., Shen, W. et al. Genome-wide evolutionary characterization and expression analyses of major latex protein (MLP) family genes in Vitis vinifera. Mol Genet Genomics 293, 1061–1075 (2018). https://doi.org/10.1007/s00438-018-1440-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-018-1440-7

Keywords

Navigation