Molecular Genetics and Genomics

, Volume 293, Issue 4, pp 945–955 | Cite as

Ten alien chromosome additions of Gossypium hirsutumGossypium bickii developed by integrative uses of GISH and species-specific SSR markers

  • Dong Tang
  • Shouli Feng
  • Sai Li
  • Yu Chen
  • Baoliang Zhou
Original Article


Gossypium bickii: (2n = 26, G1G1), a wild diploid cotton, carries many favourable traits. However, these favourable traits cannot be directly transferred into G. hirsutum (2n = 52, AADD) cultivars due to the differences in genomes. Monosomic alien addition lines (MAALs) are considered an invaluable tool for the introgression of genes of interest from wild relatives into cultivated crops. In this study, the G. hirsutumG. bickii amphidiploid (2n = 78, AADDG1G1) was backcrossed with G. hirsutum to develop alien additions containing individual G. bickii chromosomes in a G. hirsutum background. Genomic in situ hybridization was employed to detect the number of alien chromosomes added to the backcross progenies. A total of 183 G. bickii-specific DNA markers were developed to discriminate the identities of the G. bickii chromosomes added to G. hirsutum and assess the alien chromosome transmissibility. Chromosomes 4Gb and 13Gb showed the highest transmissibility, while chromosomes 1Gb, 7Gb and 11Gb showed the lowest. Ten of the 13 possible G. hirsutum-G. bickii MAALs were isolated and characterized, which will lay the foundation for transferring resistance genes of G. bickii into G. hirsutum, as well as for gene assignment, physical mapping, and selective isolation and mapping of cDNAs for particular G. bickii chromosomes. The strategies of how to use MAALs to develop varieties with the trait of interest from wild species (such as glanded plant-glandless seed) were proposed and discussed.


Genomic in situ hybridization (GISH) Gossypium hirsutum Monosomic alien addition line (MAAL) Simple sequence repeat (SSR) Wild cotton 



This study was funded by the National Key Research and Development Program of China (2016YFD0100203), the National Key Technology Support Program of China during the Twelfth 5-year plan period (2013BAD01B03-04), the Priority Academic Program Development of Jiangsu Higher Education Institutions and Jiangsu Collaborative Innovation Center for Modern Crop Production.

Compliance with ethical standards

Conflict of interest

The authors declare that there are no conflicts of interest in the reported research.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

438_2018_1434_MOESM1_ESM.docx (20 kb)
Supplementary Table S1. G. hirsutum-G. bickii chromosome-specific SSR markers (DOCX 20 KB)
438_2018_1434_MOESM2_ESM.tif (860 kb)
Supplementary Fig. S1. Number of G. bickii chromosomes added in the BC2 generation (TIF 859 KB)
438_2018_1434_MOESM3_ESM.tif (1.7 mb)
Supplementary Fig. S2. Incidence of each alien chromosome from G. bickii in the BC2 generation (TIF 1741 KB)
438_2018_1434_MOESM4_ESM.tif (251 kb)
Supplementary Fig. S3. Number individuals of each MAAL (TIF 251 KB)


  1. Ahoton L, Lacape JM, Baudoin JP, Mergeai G (2003) Introduction of Australian diploid cotton genetic variation into Upland cotton. Crop Sci 43:1999–2005CrossRefGoogle Scholar
  2. Bottger G, Sheehan ET, Lukefahr M (1964) Relation of gossypol content of cotton plants to insect resistance. J Econ Entomol 57:283–285CrossRefGoogle Scholar
  3. Chen Y, Wang Y, Wang K, Zhu X, Guo W, Zhang T, Zhou B (2014) Construction of a complete set of alien chromosome addition lines from Gossypium australe in Gossypium hirsutum: morphological, cytological, and genotypic characterization. Theor Appl Genet 127:1105–1121CrossRefPubMedPubMedCentralGoogle Scholar
  4. Du W, Wang J, Pang Y, Li Y, Chen X, Zhao J, Yang Q, Wu J (2013) Isolation and characterization of a Psathyrostachys huashanica Keng 6Ns chromosome addition in common wheat. PLoS One 8:e53921CrossRefPubMedPubMedCentralGoogle Scholar
  5. Endrizzi JE, Ramsay G (1980) Identification of ten chromosome deficiencies of cotton: cytological identification of eight chromosomes and genetic analysis of chromosome deficiencies and marker genes. J Hered 71:45–48CrossRefGoogle Scholar
  6. Fryxell P (1992) A revised taxonomic interpretation of Gossypium L. (Malvaceae). Rheedea 2:108–165Google Scholar
  7. Gao D, Jung C (2002) Monosomic addition lines of Beta corolliflora in sugar beet: plant morphology and leaf spot resistance. Plant Breed 121:81–86CrossRefGoogle Scholar
  8. Guo W, Cai C, Wang C, Han Z, Song X, Wang K, Niu X, Wang C, Lu K, Shi B (2007) A microsatellite-based, gene-rich linkage map reveals genome structure, function and evolution in Gossypium. Genetics 176:527–541CrossRefPubMedPubMedCentralGoogle Scholar
  9. Hanson RE, Zwick MS, Choi S, Islam-Faridi MN, Wing RA, Price H, Stelly DM, McKnight TD (1995) Fluorescent in situ hybridization of a bacterial artificial chromosome. Genome 38:646–651CrossRefPubMedGoogle Scholar
  10. Hau B (1981) Lignées d’addition sur l’espèce Gossypium hirsutum L. 1. Utilisation de l’hybridation interspécifique et de la méthode des lignées d’addition pour l’amélioration du cotonnier. Cot Fib Trop 36:247–258Google Scholar
  11. Kang H, Wang Y, Fedak G, Cao W, Zhang H, Fan X, Sha L, Xu L, Zheng Y, Zhou Y (2011) Introgression of chromosome 3Ns from Psathyrostachys huashanica into wheat specifying resistance to stripe rust. PLoS One 6:e21802CrossRefPubMedPubMedCentralGoogle Scholar
  12. Lei MP, Li GR, Liu C, Yang ZJ (2012) Characterization of wheat—Secale africanum introgression lines reveals evolutionary aspects of chromosome 1R in rye. Genome 55:765–774CrossRefPubMedGoogle Scholar
  13. Luo XD, Dai LF, Cao JF, Jian SR, Chen YL, Hu BL, Xie JK (2012) Identification and molecular cytology analysis of cold tolerance introgression lines derived from Oryza sativa L. mating with O. rufipogon Griff. Euphytica 187:461–469CrossRefGoogle Scholar
  14. McMichael SC (1960) Combined effects of glandless genes gl2 and gl3 on pigment glands in the cotton plant. Agron J 52:385–386CrossRefGoogle Scholar
  15. Mergeai C (1992) New perspectives concerning the methodology to be used for introgression of the glanded-plant and glandless-seed character in cultivated cotton (G. hirsutum L.). Cot Fib Trop 47:113–119Google Scholar
  16. Paterson AH, Brubaker CL, Wendel JF (1993) A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis. Plant Mol Biol Rep 11:122–127CrossRefGoogle Scholar
  17. Rooney WL, Stelly DM, Altman DW (1991) Identification of four Gossypium sturtianum monosomic alien addition derivatives from a backcrossing program with G. hirsutum. Crop Sci 31:337–341CrossRefGoogle Scholar
  18. Sarr D, Lacape JM, Rodier-Goud M, Jacquemin JM, Benbouza H, Toussaint A, Palm R, Ahoton L, Baudoin JP, Mergeai G (2011) Isolation of five new monosomic alien addition lines of Gossypium australe F. Muell in G. hirsutum L. by SSR and GISH analyses. Plant Breed 130:60–66CrossRefGoogle Scholar
  19. Sears E (1956) The transfer of leaf-rust resistance from Aegilops umbellulata to wheat. Brookhaven Sym Biol 9:1–22Google Scholar
  20. Sunilkumar G, Campbell LM, Puckhaber L, Stipanovic RD, Rathore K (2006) Engineering cottonseed for use in human nutrition by tissue-specific reduction of toxic gossypol. Proc Natl Acad Sci USA 103:18054–18059CrossRefPubMedGoogle Scholar
  21. Tang X, Shi D, Xu J, Li Y, Li W, Ren Z, Fu T (2014) Molecular cytogenetic characteristics of a translocation line between common wheat and Thinopyrum intermedium with resistance to powdery mildew. Euphytica 197:201–210CrossRefGoogle Scholar
  22. Vu HQ, Yoshimatsu Y, Khrustaleva LI, Yamauchi N, Shigyo M (2012) Alien genes introgression and development of alien monosomic addition lines from a threatened species, Allium roylei Stearn, to Allium cepa L. Theor Appl Genet 124:1241–1257CrossRefPubMedGoogle Scholar
  23. Wang CY (2001) Protocol of cotton FISH of somatic chromosomes with rDNA as probes. Cotton Sci 13:75–77Google Scholar
  24. Wang K, Song X, Han Z, Guo W, Yu JZ, Sun J, Pan J, Kohel RJ, Zhang T (2006) Complete assignment of the chromosomes of Gossypium hirsutum L. by translocation and fluorescence in situ hybridization mapping. Theor Appl Genet 113:73–80CrossRefPubMedGoogle Scholar
  25. Wang X, Wang Y, Wang C, Chen Y, Feng S, Zhao T, Zhou B (2016) Characterization of eleven monosomic alien addition lines added from Gossypium anomalum to Gossypium hirsutum using improved GISH and SSR markers. BMC Plant Biol 16:218CrossRefPubMedPubMedCentralGoogle Scholar
  26. Zhang J, Wu Y, Guo W, Zhang T (2000) Fast screening of microsatellite markers in cotton with PAGE/silver staining. Acta Gossypii Sin 12:267–269Google Scholar
  27. Zhou Z, Yu P, Liu G, He J, Chen J, Zhang X (2004) Morphological and molecular characterization of two G. somalense monosomic alien addition lines (MAALs). Chin Sci Bull 49:910–914CrossRefGoogle Scholar
  28. Zhu S, Ji D (2001) Inheritance of the delayed gland morphogenesis trait in Australian wild species of Gossypium. Chin Sci Bull 46:1168–1174CrossRefGoogle Scholar
  29. Zhu S, Jiang Y, Naganagouda R, Ji D (2004) Breeding, introgression and inheritance of delayed gland morphogenesis trait from Gossypium bickii into Upland cotton germplasm. Chin Sci Bull 49:2470–2476CrossRefGoogle Scholar
  30. Zhu S, Reddy N, Jiang Y (2005) Introgression of a gene for delayed pigment gland morphogenesis from Gossypium bickii into Upland cotton. Plant Breed 124:590–594CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOE Hybrid Cotton R&D Engineering Research CenterNanjing Agricultural UniversityNanjingPeople’s Republic of China
  2. 2.Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of AgricultureCotton Research Center of Shandong Academy of Agricultural SciencesJinanPeople’s Republic of China

Personalised recommendations