Skip to main content
Log in

MexEF-OprN multidrug efflux pump transporter negatively controls N-acyl-homoserine lactone accumulation in pseudomonas syringae pv. Tabaci 6605

  • Original Article
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Our previous studies revealed that flagellar-motility-defective mutants such as ∆fliC of Pseudomonas syringae pv. tabaci 6605 (Pta6605) have remarkably reduced production of N-acyl-homoserine lactones (AHL), quorum-sensing molecules. To investigate the reason of loss of AHL production in ∆fliC mutant, we carried out transposon mutagenesis. Among approximately 14,000 transconjugants, we found 11 AHL production-recovered (APR) strains. In these APR strains, a transposon was inserted into either mexE or mexF, genes encoding for the multidrug efflux pump transporter MexEF-OprN, and mexT, a gene encoding a putative transcriptional activator for mexEF-oprN. These results suggest that MexEF-OprN is a negative regulator of AHL production. To confirm the negative effect of MexEF-OprN on AHL production, loss- and gain-of-function experiments for mexEF-oprN were carried out. The ∆fliCmexF and ∆fliCmexT double mutant strains recovered AHL production, whereas the mexT overexpressing strain abolished AHL production, although the psyI, a gene encoding AHL synthase, is transcribed as wild type. Introduction of a mexF or mexT mutation into another flagellar-motility- and AHL production-defective mutant strain, ∆motCD, also recovered the ability to produce AHL. Furthermore, introduction of the mexF mutation into other AHL production-defective mutant strains such as ∆gacA and ∆aefR also recovered AHL production but not to the ∆psyI mutant. These results indicate that MexEF-OprN is a decisive negative determinant of AHL production and accumulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alexeyev MF, Shokolenko IN, Croughan TP (1995) New mini-Tn5 derivatives for insertion mutagenesis and genetic engineering in gram-negative bacteria. Can J Microbiol 41:1053–1055

    Article  PubMed  CAS  Google Scholar 

  • Buell CR, Joardar V, Lindeberg M, Selengut J, Paulsen IT, Gwinn ML, Dodson RJ, Deboy RT, Durkin AS, Kolonay JF, Madupu R, Daugherty S, Brinkac L, Beanan MJ, Haft DH, Nelson WC, Davidsen T, Zafar N, Zhou L, Liu J, Yuan Q, Khouri H, Fedorova N, Tran B, Russell D, Berry K, Utterback T, Van Aken SE, Feldblyum TV, D’Ascenzo M, Deng WL, Ramos AR, Alfano JR, Cartinhour S, Chatterjee AK, Delaney TP, Lazarowitz SG, Martin GB, Schneider DJ, Tang X, Bender CL, White O, Fraser CM, Collmer A (2003) The complete genome sequence of the Arabidopsis and tomato pathogen Pseudomonas syringae pv. Tomato DC3000. Proc Natl Acad Sci USA 100:10181–10186

    Article  PubMed  CAS  Google Scholar 

  • Cha JY, Lee DG, Lee JS, Oh JI, Baik HS (2012) GacA directly regulates expression of several virulence genes in Pseudomonas syringae pv tabaci 11528. Biochem Biophys Res Commun 417:665–672

    Article  PubMed  CAS  Google Scholar 

  • Devine JH, Countryman C, Baldwin TO (1988) Nucleotide sequence of the luxR and luxI genes and structure of the primary regulatory region of the lux regulon of Vibrio fischeri ATCC 7744. Biochemistry 27:837–842

    Article  CAS  Google Scholar 

  • Elasri M, Delorme S, Lemanceau P, Stewart G, Laue B, Glickmann E, Oger PM, Dessaux Y (2001) Acyl-homoserine lactone production is more common among plant-associated Pseudomonas spp. than among soilborne Pseudomonas spp. Appl Environ Microbiol 67:1198–1209

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Feil H, Feil WS, Chain P, Larimer F, DiBartolo G, Copeland A, Lykidis A, Trong S, Nolan M, Goltsman E, Thiel J, Malfatti S, Loper JE, Lapidus A, Detter JC, Land M, Richardson PM, Kyrpides NC, Ivanova N, Lindow SE (2005) Comparison of the complete genome sequences of Pseudomonas syringae pv. syringae B728a and pv. tomato DC3000 Proc Natl Acad Sci USA 102:11064–11069

    Article  PubMed  CAS  Google Scholar 

  • Fetar H, Gilmour C, Klinoski R, Daigle DM, Dean CR, Poole K (2011) mexEF-oprN multidrug efflux operon of Pseudomonas aeruginosa: regulation by the MexT activator in response to nitrosative stress and chloramphenicol. Antimicrob Agents Chemother 55:508–514

    Article  PubMed  CAS  Google Scholar 

  • Humair B, Wackwitz B, Haas D (2010) GacA-controlled activation of promoters for small RNA genes in Pseudomonas fluorescens. Appl Environ Microbiol 76:1497–1506

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ichinose Y, Taguchi F, Mukaihara T (2013) Pathogenicity and virulence factors of Pseudomonas syringae. J Gen Plant Pathol 79:285–296

    Article  CAS  Google Scholar 

  • Joardar V, Lindeberg M, Jackson RW, Selengut J, Dodson R, Brinkac LM, Daugherty SC, Deboy R, Durkin AS, Giglio MG, Madupu R, Nelson WC, Rosovitz MJ, Sullivan S, Crabtree J, Creasy T, Davidsen T, Haft DH, Zafar N, Zhou L, Halpin R, Holley T, Khouri H, Feldblyum T, White O, Fraser CM, Chatterjee AK, Cartinhour S, Schneider DJ, Mansfield J, Collmer A, Buell CR (2005) Whole-genome sequence analysis of Pseudomonas syringae pv. phaseolicola 1448A reveals divergence among pathovars in genes involved in virulence and transposition. J Bacteriol 187:6488–6498

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kanda E, Tatsuta T, Suzuki T, Taguchi F, Naito K, Inagaki Y, Toyoda K, Shiraishi T, Ichinose Y (2011) Two flagellar stators and their roles in motility and virulence in Pseudomonas syringae pv. tabaci 6605. Mol Genet Genomics 285:163–174

    Article  PubMed  CAS  Google Scholar 

  • Kawakita Y, Taguchi F, Inagaki Y, Toyoda K, Shiraishi T, Ichinose Y (2012) Characterization of each aefR and mexT mutant in Pseudomonas syringae pv. tabaci 6605 Mol Genet Genomics 287:473–484

    Article  PubMed  CAS  Google Scholar 

  • Kay E, Humair B, Dénervaud V, Riedel K, Spahr S, Eberl L, Valverde C, Haas D (2006) Two GacA-dependent small RNAs modulate the quorum-sensing response in Pseudomonas aeruginosa. J Bacteriol 188:6026–6033

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Keen NT, Tamaki S, Kobayashi D, Trollinger D (1988) Improved broad-host-range plasmids for DNA cloning in Gram-negative bacteria. Gene 70:191–197

    Article  PubMed  CAS  Google Scholar 

  • King EO, Ward NK, Raney DE (1954) Two simple media for the demonstration of pyrocyanin and fluorescein. J Lab Clin Med 44:301–307

    PubMed  CAS  Google Scholar 

  • Köhler T, Epp SF, Curty LK, Pechère J-C (1999) Characterization of MexT, the regulator of the MexE-MexF-OprN multidrug efflux system of Pseudomonas aeruginosa. J Bacteriol 181:6300–6305

    PubMed  PubMed Central  Google Scholar 

  • Köhler T, van Delden C, Curty LK, Hamzehpour MM, Pechere JC (2001) Overexpression of the MexEF-OprN multidrug efflux system affects cell-to-cell signaling in Pseudomonas aeruginosa. J Bacteriol 183:5213–5222

    Article  PubMed  PubMed Central  Google Scholar 

  • Lamarche MG, Déziel E (2011) MexEF-OprN efflux pump exports the Pseudomonas quinolone signal (PQS) precursor HHQ (4-hydroxy-2-heptylquinoline). PLoS One 6:e24310

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li XZ, Nikaido H (2009) Efflux-mediated drug resistance in bacteria: an update. Drugs 69:1555–1623

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marutani M, Taguchi F, Ogawa Y, Hossain MM, Inagaki Y, Toyoda K, Shiraishi T, Ichinose Y (2008) Gac two-component system in Pseudomonas syringae pv. tabaci is required for virulence but not for hypersensitive reaction. Mol Genet Genomics 279:313–322

    Article  PubMed  CAS  Google Scholar 

  • Maseda H, Sawada I, Saito K, Uchiyama H, Nakae T, Nomura N (2004) Enhancement of the mexAB-oprM efflux pump expression by a quorum-sensing autoinducer and its cancellation by a regulator, MexT, of the mexEF-oprN efflux pump operon in Pseudomonas aeruginosa. Antimicrob Agents Chemother 48:1320–1328

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McClean KH, Winson MK, Fish L, Taylor A, Chhabra SR, Camara M, Daykin M, Lamb JH, Swift S, Bycroft BW, Stewart GS, Williams P (1997) Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiology 143:3703–3711

    Article  PubMed  CAS  Google Scholar 

  • Minogue TD, Wehland-von Trebra M, Bernhard F, von Bodman SB (2002) The autoregulatory role of EsaR, a quorum-sensing regulator in Pantoea stewartii ssp. stewartii: evidence for a repressor function. Mol Microbiol 44:1625–1635

    Article  PubMed  CAS  Google Scholar 

  • Moll S, Schneider DJ, Stodghill P, Myers CR, Cartinhour SW, Filiatrault MJ (2010) Construction of an rsmX co-variance model and identification of five rsmX non-coding RNAs in Pseudomonas syringae pv. tomato DC3000. RNA Biol 7:508–516

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Quiñones B, Pujol CJ, Lindow SE (2004) Regulation of AHL production and its contribution to epiphytic fitness in Pseudomonas syringae. Mol Plant-Microbe Interact 17:521–531

    Article  PubMed  Google Scholar 

  • Sambrook T, Fritshch EF, Maniatis J (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Sawada H, Suzuki F, Matsuda I, Saitou N (1999) Phylogenetic analysis of Pseudomonas syringae pathovars suggests the horizontal gene transfer of argK and the evolutionary stability of hrp gene cluster. J Mol Evol 49:627–644

    Article  PubMed  CAS  Google Scholar 

  • Schäfer A, Tauch A, Jäger W, Kalinowski J, Thierbach G, Pühler A (1994) Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145:69–73

    Article  PubMed  Google Scholar 

  • Shimizu R, Taguchi F, Marutani M, Mukaihara T, Inagaki Y, Toyoda K, Shiraishi T, Ichinose Y (2003) The ∆fliD mutant of Pseudomonas syringae pv. tabaci, which secretes flagellin monomers, induces a strong hypersensitive reaction (HR) in non-host tomato cells. Mol Genet Genomics 269:21–30

    PubMed  CAS  Google Scholar 

  • Sitnikov DM, Schineller JB, Baldwin TO (1995) Transcriptional regulation of bioluminesence genes from Vibrio fischeri. Mol Microbiol 17:801–812

    Article  PubMed  CAS  Google Scholar 

  • Taguchi F, Takeuchi K, Katoh E, Murata K, Suzuki T, Marutani M, Kawasaki T, Eguchi M, Katoh S, Kaku H, Yasuda C, Inagaki Y, Toyoda K, Shiraishi T, Ichinose Y (2006) Identification of glycosylation genes and glycosylated amino acids of flagellin in Pseudomonas syringae pv. tabaci. Cell Microbiol 8:923–938

    Article  PubMed  CAS  Google Scholar 

  • Taguchi F, Yamamoto M, Ohnishi-Kameyama M, Iwaki M, Yoshida M, Ishii T, Konishi T, Ichinose Y (2010) Defects in flagellin glycosylation affect the virulence of Pseudomonas syringae pv. tabaci 6605 Microbiology 156:72–80

    Article  PubMed  CAS  Google Scholar 

  • Taguchi F, Inoue Y, Suzuki T, Inagaki Y, Yamamoto M, Toyoda K, Noutoshi Y, Shiraishi T, Ichinose Y (2015) Characterization of quorum sensing-controlled transcriptional regulator MarR and Rieske (2Fe-2S) cluster-containing protein (Orf5), which are involved in resistance to environmental stresses in Pseudomonas syringae pv. tabaci 6605 Mol Plant Pathol 16:376–387

    Article  PubMed  CAS  Google Scholar 

  • Wilson K (1989) Preparation of genomic DNA from bacteria. In: Ausubel FM, Brent R, Kingston RE, Moor DD, Smith JA, Seidman JG, Struhl K (eds) Current protocols in molecular biology. Wiley, New York pp. 2.4.1–2.4.5

    Google Scholar 

  • Yun S, Lee JS, Do MS, Jeon YJ, Cha JY, Baik HS (2015) Functional analysis of the aefR mutation and identification of its binding site in Pseudomonas syringae pv. tabaci 11528 Acta Biochim Biophys Sin 47:938–945

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Leaf Tobacco Research Laboratory, Japan Tobacco Inc., and Dr. D. Studholme, University of Exeter, UK, for providing Pta6605 and genome sequence information of Pta6605, respectively. This work was supported in part by Grants-in-Aid for Scientific Researches, 15H04458 and 16K14861 from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuki Ichinose.

Ethics declarations

Conflict of interest

All of the authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with animals performed by any of the authors.

Additional information

Communicated by S. Hohmann

Nucleotide sequence accession numbers: AB676069 for mexT and LC217528 for mexEFoprN, respectively.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPT 4098 KB)

Supplementary material 2 (PPT 4098 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sawada, T., Eguchi, M., Asaki, S. et al. MexEF-OprN multidrug efflux pump transporter negatively controls N-acyl-homoserine lactone accumulation in pseudomonas syringae pv. Tabaci 6605. Mol Genet Genomics 293, 907–917 (2018). https://doi.org/10.1007/s00438-018-1430-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-018-1430-9

Keywords

Navigation