Skip to main content
Log in

Comparative genomics and transcriptome analysis of Lactobacillus rhamnosus ATCC 11443 and the mutant strain SCT-10-10-60 with enhanced l-lactic acid production capacity

  • Original Article
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Mechanisms for high l-lactic acid production remain unclear in many bacteria. Lactobacillus rhamnosus SCT-10-10-60 was previously obtained from L. rhamnosus ATCC 11443 via mutagenesis and showed improved l-lactic acid production. In this study, the genomes of strains SCT-10-10-60 and ATCC 11443 were sequenced. Both genomes are a circular chromosome, 2.99 Mb in length with a GC content of approximately 46.8%. Eight split genes were identified in strain SCT-10-10-60, including two LytR family transcriptional regulators, two Rex redox-sensing transcriptional repressors, and four ABC transporters. In total, 60 significantly up-regulated genes (log2fold-change ≥ 2) and 39 significantly down-regulated genes (log2fold-change ≤ − 2) were identified by a transcriptome comparison between strains SCT-10-10-60 and ATCC 11443. KEGG pathway enrichment analysis revealed that “pyruvate metabolism” was significantly different (P < 0.05) between the two strains. The split genes and the differentially expressed genes involved in the “pyruvate metabolism” pathway are probably responsible for the increased l-lactic acid production by SCT-10-10-60. The genome and transcriptome sequencing information and comparison of SCT-10-10-60 with ATCC 11443 provide insights into the anabolism of l-lactic acid and a reference for improving l-lactic acid production using genetic engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11:R106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anders S, Pyl PT, Huber W (2015) HTSeq-a python framework to work with high-throughput sequencing data. Bioinformatics 31:166–169

    Article  CAS  PubMed  Google Scholar 

  • Bao T, Zhang X, Zhao X, Rao Z, Yang T, Yang S (2015) Regulation of the NADH pool and NADH/NADPH ratio redistributes acetoin and 2,3-butanediol proportion in Bacillus subtilis. Biotechnol J 10:1298–1306

    Article  CAS  PubMed  Google Scholar 

  • Berlin K, Koren S, Chin CS, Drake JP, Landolin JM, Phillippy AM (2015) Assembling large genomes with single-molecule sequencing and locality-sensitive hashing. Nat Biotechnol 33:623–630

    Article  CAS  PubMed  Google Scholar 

  • Besemer J, Lomsadze A, Borodovsky M (2001) GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res 29:2607–2618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolotin A, Wincker P, Mauger S, Jaillon O, Malarme K, Weissenbach J, Ehrlich SD, Sorokin A (2001) The complete genome sequence of lactic acid bacterium Lactococcus lactis ssp lactis IL1403. Genome Res 11:731–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chatfield CH, Koo H, Jr QR (2005) The putative autolysin regulator LytR in Streptococcus mutans plays a role in cell division and is growth-phase regulated. Microbiology 151:625–631

    Article  CAS  PubMed  Google Scholar 

  • Chiaromonte F, Yap VB, Miller W (2001) Scoring pairwise genomic sequence alignments. Pac Symp Biocomput 7:115–126

    Google Scholar 

  • Cui X, Lu Z, Wang S, Jing-Yan Wang J, Gao X (2016) CMsearch: simultaneous exploration of protein sequence space and structure space improves not only protein homology detection but also protein structure prediction. Bioinformatics 32:i332–i340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Djukić-Vuković AP, Jokić BM, Kocić-Tanackov SD, Pejin JD, Mojović LV (2015) Mg-modified zeolite as a carrier for Lactobacillus rhamnosus in l(+)-lactic acid production on distillery wastewater. J Taiwan Inst Chem E 59:262–266

    Article  Google Scholar 

  • Douillard FP, de Vos WM (2014) Functional genomics of lactic acid bacteria: from food to health. Microb Cell Fact 13:S8

    Article  PubMed  PubMed Central  Google Scholar 

  • Douillard FP, Ribbera A, Kant R, Pietilä TE, Järvinen HM, Messing M, Randazzo CL, Paulin L, Laine P, Ritari J, Caggia C, Lähteinen T, Brouns SJ, Satokari R, von Ossowski I, Reunanen J, Palva A, de Vosm WM (2013) Comparative genomic and functional analysis of 100 Lactobacillus rhamnosus strains and their comparison with strain GG. PLoS Genet 9:e1003683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eid J, Fehr A, Gray J, Luong K, Lyle J, Otto G, Peluso P, Rank D, Baybayan P, Bettman B, Bibillo A, Bjornson K, Chaudhuri B, Christians F, Cicero R, Clark S, Dalal R, deWinter A, Dixon J, Foquet M, Gaertner A, Hardenbol P, Heiner C, Hester K, Holden D, Kearns G, Kong X, Kuse R, Lacroix Y, Lin S, Lundquist P, Ma C, Marks P, Maxham M, Murphy D, Park I, Pham T, Phillips M, Roy J, Sebra R, Shen G, Sorenson J, Tomaney A, Travers K, Trulson M, Vieceli J, Wegener J, Wu D, Yang A, Zaccarin D, Zhao P, Zhong F, Korlach J, Turner S (2009) Real-time DNA sequencing from single polymerase molecules. Science 323:133–138

    Article  CAS  PubMed  Google Scholar 

  • Even S, Lindley ND, Cocaign-Bousquet M (2001) Molecular physiology of sugar catabolism in Lactococcus lactis IL1403. J Bacteriol 183:3817–3824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao C, Ma C, Xu P (2011) Biotechnological routes based on lactic acid production from biomass. Biotechnol Adv 29:930–939

    Article  CAS  PubMed  Google Scholar 

  • Gardner PP, Daub J, Tate JG, Nawrocki EP, Kolbe DL, Lindgreen S, Wilkinson AC, Finn RD, Griffiths-Jones S, Eddy SR, Bateman A (2009) Rfam: updates to the RNA families database. Nucleic Acids Res 37:D136–D140

    Article  CAS  PubMed  Google Scholar 

  • Harris RS (2007) Improved pairwise alignment of genomic DNA. Dissertations & Theses - Gradworks

  • Hujanen M, Linko S, Linko YY, Leisola M (2001) Optimisation of media and cultivation conditions for L(+)(S)-lactic acid production by Lactobacillus casei NRRL B-441. Appl Microbiol Biotechnol 56:126–130

    Article  CAS  PubMed  Google Scholar 

  • John RP, Nampoothiri KM, Pandey A (2006) Solid-state fermentation for l-lactic acid production from agro wastes using Lactobacillus delbrueckii. Proc Biochem 41:759–763

    Article  CAS  Google Scholar 

  • Juturu V, Wu JC (2015) Microbial production of lactic acid: the latest development. Crit Rev Biotechnol 11:1–11

    Google Scholar 

  • Kadam SR, Patil SS, Bastawde KB, Khire JM, Gokhale DV (2006) Strain improvement of Lactobacillus delbrueckii NCIM 2365 for lactic acid production. Proc Biochem 41:120–126

    Article  CAS  Google Scholar 

  • Kankainen M, Paulin L, Tynkkynen S, von Ossowski I, Reunanen J, Partanen P, Satokari R, Vesterlund S, Hendrickx AP, Lebeer S, De Keersmaecker SC, Vanderleyden J, Hämäläinen T, Laukkanen S, Salovuori N, Ritari J, Alatalo E, Korpela R, Mattila-Sandholm T, Lassig A, Hatakka K, Kinnunen KT, Karjalainen H, Saxelin M, Laakso K, Surakka A, Palva A, Salusjärvi T, Auvinen P, de Vos WM (2009) Comparative genomic analysis of Lactobacillus rhamnosus GG reveals pili containing a human-mucus binding protein. Proc Natl Acad Sci USA 106:17193–17198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klotz S, Kaufmann N, Kuenz A, Prüße U (2016) Biotechnological production of enantiomerically pure d-lactic acid. Appl Microbiol Biotechnol 100:9423–9437

    Article  CAS  PubMed  Google Scholar 

  • Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, Salzberg SL (2004) Versatile and open software for comparing large genomes. Genome Biol 5:R12

    Article  PubMed  PubMed Central  Google Scholar 

  • Lagesen K, Hallin P, Rødland EA, Stærfeldt H, Rognes T, Ussery DW (2007) RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 35:3100–3108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat methods 9:357–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, Lu J, Zhao L, Xiao K, Tan T (2010) Improvement of l-lactic acid production under glucose feedback controlled culture by Lactobacillus rhamnosus. Appl Biochem Biotechnol 162:1762–1767

    Article  CAS  PubMed  Google Scholar 

  • Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Makarova K, Slesarev A, Wolf Y, Sorokin A, Mirkin B, Koonin E, Pavlov A, Pavlova N, Karamychev V, Polouchine N, Shakhova V, Grigoriev I, Lou Y, Rohksar D, Lucas S, Huang K, Goodstein DM, Hawkins T, Plengvidhya V, Welker D, Hughes J, Goh Y, Benson A, Baldwin K, Lee JH, Díaz-Muñiz I, Dosti B, Smeianov V, Wechter W, Barabote R, Lorca G, Altermann E, Barrangou R, Ganesan B, Xie Y, Rawsthorne H, Tamir D, Parker C, Breidt F, Broadbent J, Hutkins R, O’Sullivan D, Steele J, Unlu G, Saier M, Klaenhammer T, Richardson P, Kozyavkin S, Weimer B, Mills D (2006) Comparative genomics of the lactic acid bacteria. Proc Natl Acad Sci USA 103:15611–15616

    Article  PubMed  PubMed Central  Google Scholar 

  • Mao X, Cai T, Olyarchuk JG, Wei L (2005) Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics 21:3787–3793

    Article  CAS  PubMed  Google Scholar 

  • Melchiorsen CR, Jokumsen KV, Villadsen J, Israelsen H, Arnau J (2002) The level of pyruvate-formate lyase controls the shift from homolactic to mixed-acid product formation in Lactococcus lactis. Appl Microbiol Biotechnol 58:338–344

    Article  CAS  PubMed  Google Scholar 

  • Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-SEq. Nat Methods 5:621–628

    Article  CAS  PubMed  Google Scholar 

  • Narayanan N, Roychoudhury PK, Srivastava A (2004) l-Lactic acid fermentation and its product polymerization. Electron J Biotechn 7:167–179

    Google Scholar 

  • Naveena BJ, Altaf M, Bhadriah K, Reddy G (2005) Selection of medium components by Placket Burman design for the production of l(+)-lactic acid by Lactobacillus amylophilus GV6 in SSF using wheat bran. Bioresour Technol 96:485–490

    Article  CAS  PubMed  Google Scholar 

  • Nawrocki EP, Kolbe DL (2009) Eddy SR: Infernal 1.0: inference of RNA alignments. Bioinformatics 25:1335–1337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohkouchi Y, Inoue Y (2006) Direct production of l(+)-lactic acid from starch and food wastes using Lactobacillus manihotivorans LMG18011. Bioresour Technol 97:1554–1562

    Article  CAS  PubMed  Google Scholar 

  • Ravcheev DA, Li X, Latif H, Zengler K, Leyn SA, Korostelev YD, Kazakov AE, Novichkov PS, Osterman AL, Rodionov DA (2012) Transcriptional regulation of central carbon and energy metabolism in bacteria by redox-responsive repressor Rex. J Bacteriol 194:1145–1157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reunanen J, von Ossowski I, Hendrickx APA, Palva A, de Vos WM (2012) Characterization of the SpaCBA pilus fibers in the probiotic Lactobacillus rhamnosus GG. Appl Environ Microbiol 78:2337–2344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rojan PJ, Nampoothiri KM, Nair AS, Pandey A (2005) l(+)-Lactic acid production using Lactobacillus casei in solid-state fermentation. Biotechnol Lett 27:1685–1688

    Article  CAS  PubMed  Google Scholar 

  • Senedese ALC, Maciel Filho R, Maciel MR (2015) l-Lactic acid production by Lactobacillus rhamnosus ATCC 10863. Sci World J 2015:501029

  • Sergey K, Adam MP (2015) One chromosome, one contig: complete microbial genomes from long-read sequencing and assembly. Curr Opin Microbiol 23:110–120

    Article  Google Scholar 

  • Stefanovic E, Fitzgerald G, Mcauliffe O (2017) Advances in the genomics and metabolomics of dairy lactobacilli: a review. Food Microbiol 61:33–49

    Article  CAS  PubMed  Google Scholar 

  • Sun L, Sun F, Huang Y, Lu F, Huang R (2009) Optimization of Fermentation conditions in producing l-lactic acid by cassava starch. China Brewing 7:33–37

    Google Scholar 

  • Sun L, Li J, Sun F, Huang Y, Guo L, Huang R (2013) Breeding of a Lactobacillus rhamnosus strain with the high yield fermentation of l-lactic acid. Guangxi Sciences 20:152–157

    CAS  Google Scholar 

  • Sun Z, Harris HMB, McCann A, Guo C, Argimón S, Zhang W, Yang X, Jeffery IB, Cooney JC, Kagawa TF, Liu W, Song Y, Salvetti E, Wrobel A, Rasinkangas P, Parkhill J, Rea MC, O’Sullivan O, Ritari J, Douillard FP, PaulRoss R, Yang R, Briner AE, Felis GE, de Vos WM, Barrangou R, Klaenhammer TR, Caufield PW, Cui Y, Zhang H, O’Toole PW (2015) Expanding the biotechnology potential of lactobacilli through comparative genomics of 213 strains and associated genera. Nat Commun 6:8322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tango MS, Ghaly AE (2002) A continuous lactic acid production system using an immobilized packed bed of Lactobacillus helveticus. Appl Microbiol Biotechnol 58:712–720

    Article  CAS  PubMed  Google Scholar 

  • von Ossowski I, Reunanen J, Satokari R, Vesterlund S, Kankainen M, Huhtinen H, Tynkkynen S, Salminen S, de Vos WM, Palva A (2010) Mucosal adhesion properties of the probiotic Lactobacillus rhamnosus GG SpaCBA and SpaFED pilin subunits. Appl Environ Microbiol 76:2049–2057

    Article  Google Scholar 

  • Wang Y, Li Y, Pei X, Yu L, Feng Y (2007) Genome-shuffling improved acid tolerance and l-lactic acid volumetric productivity in Lactobacillus rhamnosus. J Biotechnol 129:510–515

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Zhao B, Liu B, Yang C, Yu B, Li Q, Ma C, Xu P, Ma Y (2010) Efficient production of l-lactic acid from cassava powder by Lactobacillus rhamnosus. Bioresour Technol 101:7895–7901

    Article  CAS  PubMed  Google Scholar 

  • Wilkens S (2015) Structure and mechanism of ABC transporters. F1000 prime Reports 7:14

    PubMed  PubMed Central  Google Scholar 

  • Yang M, Xu L, Liu Y, Yang P (2015) RNA-Seq uncovers SNPs and alternative splicing events in Asia lotus (Nelumbo nucifera). PLoS One 10:e0125702

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu L, Pei X, Lei T, Wang Y, Feng Y (2008) Genome shuffling enhanced l-lactic acid production by improving glucose tolerance of Lactobacillus rhamnosus. J Biotechnol 134:154–159

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ribo Huang.

Ethics declarations

Funding

This research was supported jointly by the National High Technology Research and Development Program (“863” Program) of China (No. 2013AA050701) and Basic Science and Research Funding Program of Guangxi Academy of Science (No. 12YJ25SW06).

Conflict of interest

Liang Sun declares that he/she has no conflict of interest. Zhilong Lu declares that he/she has no conflict of interest. Jianxiu Li declares that he/she has no conflict of interest. Feifei Sun declares that he/she has no conflict of interest. Ribo Huang declares that he/she has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by S. Hohmann.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, L., Lu, Z., Li, J. et al. Comparative genomics and transcriptome analysis of Lactobacillus rhamnosus ATCC 11443 and the mutant strain SCT-10-10-60 with enhanced l-lactic acid production capacity. Mol Genet Genomics 293, 265–276 (2018). https://doi.org/10.1007/s00438-017-1379-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-017-1379-0

Keywords

Navigation