Skip to main content

Advertisement

Log in

Major splice variants and multiple polyadenylation site utilization in mRNAs encoding human translation initiation factors eIF4E1 and eIF4E3 regulate the translational regulators?

  • Original Article
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Alternative polyadenylation is an important and pervasive mechanism that generates heterogeneous 3′-termini of mRNA and is considered an important regulator of gene expression. We performed bioinformatics analyses of ESTs and the 3′-UTRs of the main transcript splice variants of the translational initiation factor eIF4E1 and its family members, eIF4E2 and eIF4E3. This systematic analysis led to the prediction of new polyadenylation signals. All identified polyadenylation sites were subsequently verified by 3′RACE of transcripts isolated from human lymphoblastic cell lines. This led to the observation that multiple simultaneous polyadenylation site utilization occurs in single cell population. Importantly, we described the use of new polyadenylation site in the eIF4E1 mRNA, which lacked any known polyadenylation signal. The proportion of eIF4E1 transcripts derived from the first two polyadenylation sites in eIF4E1 mRNA achieved 15% in a wide range of cell lines. This result demonstrates the ubiquitous presence of ARE-lacking transcripts, which escape HuR/Auf1-mediated control, the main mechanism of eIF4E1 gene expression regulation. We found many EST clones documenting the significant production of transcript variants 2–4 of eIF4E2 gene that encode proteins with C-termini that were distinct from the mainly studied prototypical isoform A. Similarly, eIF4E3 mRNAs are produced as two main variants with the same very long 3′-UTR with potential for heavy post-transcriptional regulation. We identified sparsely documented transcript variant 1 of eIF4E3 gene in human placenta. eIF4E3 truncated transcript variants were found mainly in brain. We propose to elucidate the minor splice variants of eIF4E2 and eIF4E3 in great detail because they might produce proteins with modified features that fulfill different cellular roles from their major counterparts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ARE:

A/U-rich element

CS:

Cleavage site

AP:

Alternative polyadenylation

PAS:

Polyadenylation site

PaS:

Polyadenylation signal

EST:

Expressed sequence tag

GS:

Gene specific primer

ALL:

Acute lymphoblastic leukemia

3′RACE:

3′-Rapid amplification of cDNA ends

References

  • Abascal F, Ezkurdia I, Rodriguez-Rivas J, Rodriguez JM, del Pozo A, Vazquez J, Valencia A, Tress ML (2015) Alternatively spliced homologous exons have ancient origins and are highly expressed at the protein level. PLoS Comput Biol 11:e1004325

    Article  PubMed  PubMed Central  Google Scholar 

  • Assouline S, Culjkovic B, Cocolakis E, Rousseau C, Beslu N, Amri A, Caplan S, Leber B, Roy DC, Miller WH Jr, Borden KL (2009) Molecular targeting of the oncogene eIF4E in acute myeloid leukemia (AML): a proof-of-principle clinical trial with ribavirin. Blood 114:257–260

    Article  CAS  PubMed  Google Scholar 

  • Beaudoing E, Freier S, Wyatt JR, Claverie JM, Gautheret D (2000) Patterns of variant polyadenylation signal usage in human genes. Genome Res 10:1001–1010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction. Anal Biochem 162:156–159

    Article  CAS  PubMed  Google Scholar 

  • Culjkovic B, Topisirovic I, Skrabanek L, Ruiz-Gutierrez M, Borden KL (2006) eIF4E is a central node of an RNA regulon that governs cellular proliferation. J Cell Biol 175:415–426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Klerk E, t Hoen PA (2015) Alternative mRNA transcription, processing, and translation: insights from RNA sequencing. Trends Genet 31:128–139

    Article  PubMed  Google Scholar 

  • Di Giammartino DC, Nishida K, Manley JL (2011) Mechanisms and consequences of alternative polyadenylation. Mol Cell 43:853–866

    Article  PubMed  PubMed Central  Google Scholar 

  • Dostie J, Ferraiuolo M, Pause A, Adam SA, Sonenberg N (2000) A novel shuttling protein, 4E-T, mediates the nuclear import of the mRNA 5′ cap-binding protein, eIF4E. EMBO J 19:3142–3156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Floor SN, Doudna JA (2016) Tunable protein synthesis by transcript isoforms in human cells. eLife 5:e10921

    Article  PubMed  PubMed Central  Google Scholar 

  • Frydryskova K, Masek T, Borcin K, Mrvova S, Venturi V, Pospisek M (2016) Distinct recruitment of human eIF4E isoforms to processing bodies and stress granules. BMC Mol Biol 17:21

    Article  PubMed  PubMed Central  Google Scholar 

  • Fu Y, Sun Y, Li Y, Li J, Rao X, Chen C, Xu A (2011) Differential genome-wide profiling of tandem 3′ UTRs among human breast cancer and normal cells by high-throughput sequencing. Genome Res 21:741–747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu R, Olsen MT, Webb K, Bennett EJ, Lykke-Andersen J (2016) Recruitment of the 4EHP-GYF2 cap-binding complex to tetraproline motifs of tristetraprolin promotes repression and degradation of mRNAs with AU-rich elements. RNA 22:373–382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao M, Rychlik W, Rhoads RE (1998) Cloning and characterization of human eIF4E genes. J Biol Chem 273:4622–4628

    Article  CAS  PubMed  Google Scholar 

  • Gruber AJ, Schmidt R, Gruber AR, Martin G, Ghosh S, Belmadani M, Keller W, Zavolan M (2016) A comprehensive analysis of 3′ end sequencing data sets reveals novel polyadenylation signals and the repressive role of heterogeneous ribonucleoprotein C on cleavage and polyadenylation. Genome Res 26:1145–1159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hernandez G, Altmann M, Sierra JM, Urlaub H, Diez del Corral R, Schwartz P, Rivera-Pomar R (2005) Functional analysis of seven genes encoding eight translation initiation factor 4E (eIF4E) isoforms in Drosophila. Mech Dev 122:529–543

    Article  CAS  PubMed  Google Scholar 

  • Ho JJ, Wang M, Audas TE, Kwon D, Carlsson SK, Timpano S, Evagelou SL, Brothers S, Gonzalgo ML, Krieger JR, Chen S, Uniacke J, Lee S (2016) Systemic reprogramming of translation efficiencies on oxygen stimulus. Cell Rep 14:1293–1300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou JQ, Lam F, Proud C, Wang SD (2012) Targeting Mnks for cancer therapy. Oncotarget 3:118–131

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu J, Lutz CS, Wilusz J, Tian B (2005) Bioinformatic identification of candidate cis-regulatory elements involved in human mRNA polyadenylation. RNA 11:1485–1493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ji Z, Tian B (2009) Reprogramming of 3′ untranslated regions of mRNAs by alternative polyadenylation in generation of pluripotent stem cells from different cell types. PLoS One 4:e8419

    Article  PubMed  PubMed Central  Google Scholar 

  • Ji Z, Lee JY, Pan Z, Jiang B, Tian B (2009) Progressive lengthening of 3′ untranslated regions of mRNAs by alternative polyadenylation during mouse embryonic development. Proc Natl Acad Sci USA 106:7028–7033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ji Z, Luo W, Li W, Hoque M, Pan Z, Zhao Y, Tian B (2011) Transcriptional activity regulates alternative cleavage and polyadenylation. Mol Syst Biol 7:534

    Article  PubMed  PubMed Central  Google Scholar 

  • Jia J, Yao P, Arif A, Fox PL (2013) Regulation and dysregulation of 3′UTR-mediated translational control. Curr Opin Genet Dev 23:29–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones RM, Branda J, Johnston KA, Polymenis M, Gadd M, Rustgi A, Callanan L, Schmidt EV (1996) An essential E box in the promoter of the gene encoding the mRNA cap-binding protein (eukaryotic initiation factor 4E) is a target for activation by c-myc. Mol Cell Biol 16:4754–4764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joshi B, Cameron A, Jagus R (2004) Characterization of mammalian eIF4E-family members. Eur J Biochem 271:2189–2203

    Article  CAS  PubMed  Google Scholar 

  • Joshi B, Lee K, Maeder DL, Jagus R (2005) Phylogenetic analysis of eIF4E-family members. BMC Evol Biol 5:48

    Article  PubMed  PubMed Central  Google Scholar 

  • Keiper BD, Lamphear BJ, Deshpande AM, Jankowska-Anyszka M, Aamodt EJ, Blumenthal T, Rhoads RE (2000) Functional characterization of five eIF4E isoforms in Caenorhabditis elegans. J Biol Chem 275:10590–10596

    Article  CAS  PubMed  Google Scholar 

  • Kubacka D, Miguel RN, Minshall N, Darzynkiewicz E, Standart N, Zuberek J (2015) Distinct features of cap binding by eIF4E1b proteins. J Mol Biol 427:387–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Landon AL, Muniandy PA, Shetty AC, Lehrmann E, Volpon L, Houng S, Zhang Y, Dai B, Peroutka R, Mazan-Mamczarz K, Steinhardt J, Mahurkar A, Becker KG, Borden KL, Gartenhaus RB (2014) MNKs act as a regulatory switch for eIF4E1 and eIF4E3 driven mRNA translation in DLBCL. Nat Commun 5:5413

    Article  PubMed  PubMed Central  Google Scholar 

  • Lebedeva S, Jens M, Theil K, Schwanhausser B, Selbach M, Landthaler M, Rajewsky N (2011) Transcriptome-wide analysis of regulatory interactions of the RNA-binding protein HuR. Mol Cell 43:340–352

    Article  CAS  PubMed  Google Scholar 

  • Liu D, Brockman JM, Dass B, Hutchins LN, Singh P, McCarrey JR, MacDonald CC, Graber JH (2007) Systematic variation in mRNA 3′-processing signals during mouse spermatogenesis. Nucleic Acids Res 35:234–246

    Article  CAS  PubMed  Google Scholar 

  • Lopez de Silanes I, Zhan M, Lal A, Yang X, Gorospe M (2004) Identification of a target RNA motif for RNA-binding protein HuR. Proc Natl Acad Sci USA 101:2987–2992

    Article  PubMed  Google Scholar 

  • Mandel CR, Bai Y, Tong L (2008) Protein factors in pre-mRNA 3′-end processing. Cell Mol Life Sci 65:1099–1122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masek T, Vopalensky V, Suchomelova P, Pospisek M (2005) Denaturing RNA electrophoresis in TAE agarose gels. Anal Biochem 336:46–50

    Article  CAS  PubMed  Google Scholar 

  • Mayr C, Bartel DP (2009) Widespread shortening of 3′UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell 138:673–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miura P, Shenker S, Andreu-Agullo C, Westholm JO, Lai EC (2013) Widespread and extensive lengthening of 3′ UTRs in the mammalian brain. Genome Res 23:812–825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nunes NM, Li W, Tian B, Furger A (2010) A functional human Poly(A) site requires only a potent DSE and an A-rich upstream sequence. EMBO J 29:1523–1536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osborne MJ, Volpon L, Kornblatt JA, Culjkovic-Kraljacic B, Baguet A, Borden KL (2013) eIF4E3 acts as a tumor suppressor by utilizing an atypical mode of methyl-7-guanosine cap recognition. Proc Natl Acad Sci USA 110:3877–3882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan Q, Shai O, Lee LJ, Frey BJ, Blencowe BJ (2008) Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet 40:1413–1415

    Article  CAS  PubMed  Google Scholar 

  • Pause A, Belsham GJ, Gingras AC, Donze O, Lin TA, Lawrence JC Jr, Sonenberg N (1994) Insulin-dependent stimulation of protein synthesis by phosphorylation of a regulator of 5′-cap function. Nature 371:762–767

    Article  CAS  PubMed  Google Scholar 

  • Pelechano V, Wei W, Steinmetz LM (2013) Extensive transcriptional heterogeneity revealed by isoform profiling. Nature 497:127–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rom E, Kim HC, Gingras AC, Marcotrigiano J, Favre D, Olsen H, Burley SK, Sonenberg N (1998) Cloning and characterization of 4EHP, a novel mammalian eIF4E-related cap-binding protein. J Biol Chem 273:13104–13109

    Article  CAS  PubMed  Google Scholar 

  • Rosenwald IB, Lazaris-Karatzas A, Sonenberg N, Schmidt EV (1993) Elevated levels of cyclin D1 protein in response to increased expression of eukaryotic initiation factor 4E. Mol Cell Biol 13:7358–7363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sandberg R, Neilson JR, Sarma A, Sharp PA, Burge CB (2008) Proliferating cells express mRNAs with shortened 3′ untranslated regions and fewer microRNA target sites. Science 320:1643–1647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwerk J, Savan R (2015) Translating the untranslated region. J Immunol 195:2963–2971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scott PA, Smith K, Poulsom R, De Benedetti A, Bicknell R, Harris AL (1998) Differential expression of vascular endothelial growth factor mRNA vs protein isoform expression in human breast cancer and relationship to eIF-4E. Br J Cancer 77:2120–2128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shepard PJ, Choi EA, Lu J, Flanagan LA, Hertel KJ, Shi Y (2011) Complex and dynamic landscape of RNA polyadenylation revealed by PAS-Seq. RNA 17:761–772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi Y, Di Giammartino DC, Taylor D, Sarkeshik A, Rice WJ, Yates JR 3rd, Frank J, Manley JL (2009) Molecular architecture of the human pre-mRNA 3′ processing complex. Mol Cell 33:365–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tao X, Gao G (2015) Tristetraprolin recruits eukaryotic initiation factor 4E2 to repress translation of AU-rich element-containing mRNAs. Mol Cell Biol 35:3921–3932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian B, Hu J, Zhang H, Lutz CS (2005) A large-scale analysis of mRNA polyadenylation of human and mouse genes. Nucleic Acids Res 33:201–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Topisirovic I, Siddiqui N, Borden KL (2009a) The eukaryotic translation initiation factor 4E (eIF4E) and HuR RNA operons collaboratively regulate the expression of survival and proliferative genes. Cell Cycle 8:960–961

    Article  CAS  PubMed  Google Scholar 

  • Topisirovic I, Siddiqui N, Lapointe VL, Trost M, Thibault P, Bangeranye C, Pinol-Roma S, Borden KL (2009b) Molecular dissection of the eukaryotic initiation factor 4E (eIF4E) export-competent RNP. EMBO J 28:1087–1098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Topisirovic I, Siddiqui N, Orolicki S, Skrabanek LA, Tremblay M, Hoang T, Borden KL (2009c) Stability of eukaryotic translation initiation factor 4E mRNA is regulated by HuR, and this activity is dysregulated in cancer. Mol Cell Biol 29:1152–1162

    Article  CAS  PubMed  Google Scholar 

  • Tress ML, Abascal F, Valencia A (2017) Alternative splicing may not be the key to proteome complexity. Trends Biochem Sci 42:98–110

    Article  CAS  PubMed  Google Scholar 

  • Uniacke J, Holterman CE, Lachance G, Franovic A, Jacob MD, Fabian MR, Payette J, Holcik M, Pause A, Lee S (2012) An oxygen-regulated switch in the protein synthesis machinery. Nature 486:126–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Villaescusa JC, Buratti C, Penkov D, Mathiasen L, Planaguma J, Ferretti E, Blasi F (2009) Cytoplasmic Prep1 interacts with 4EHP inhibiting Hoxb4 translation. PLoS One 4:e5213

    Article  PubMed  PubMed Central  Google Scholar 

  • Volpon L, Osborne MJ, Culjkovic-Kraljacic B, Borden KL (2013) eIF4E3, a new actor in mRNA metabolism and tumor suppression. Cell Cycle 12:1159–1160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C, Kingsmore SF, Schroth GP, Burge CB (2008) Alternative isoform regulation in human tissue transcriptomes. Nature 456:470–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Hou J, Quedenau C, Chen W (2016) Pervasive isoform-specific translational regulation via alternative transcription start sites in mammals. Mol Syst Biol 12:875

    Article  PubMed  PubMed Central  Google Scholar 

  • Wong QW, Vaz C, Lee QY, Zhao TY, Luo R, Archer SK, Preiss T, Tanavde V, Vardy LA (2016) Embryonic stem cells exhibit mRNA isoform specific translational regulation. PLoS One 11:e0143235

    Article  PubMed  PubMed Central  Google Scholar 

  • You L, Wu J, Feng Y, Fu Y, Guo Y, Long L, Zhang H, Luan Y, Tian P, Chen L, Huang G, Huang S, Li Y, Li J, Chen C, Zhang Y, Chen S, Xu A (2015) APASdb: a database describing alternative poly(A) sites and selection of heterogeneous cleavage sites downstream of poly(A) signals. Nucleic Acids Res 43:D59–D67

    Article  CAS  PubMed  Google Scholar 

  • Zhu H, Zhou HL, Hasman RA, Lou H (2007) Hu proteins regulate polyadenylation by blocking sites containing U-rich sequences. J Biol Chem 282:2203–2210

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Jan Trka for providing them with cell lines.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomáš Mašek.

Ethics declarations

Funding

This work was supported by the Ministry of Health of the Czech Republic, project NT13713-4 and the Czech Science Foundation, project No. GBP305/12/G034.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from the participant included in the study.

Additional information

Communicated by S. Hohmann.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mrvová, S., Frydrýšková, K., Pospíšek, M. et al. Major splice variants and multiple polyadenylation site utilization in mRNAs encoding human translation initiation factors eIF4E1 and eIF4E3 regulate the translational regulators?. Mol Genet Genomics 293, 167–186 (2018). https://doi.org/10.1007/s00438-017-1375-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-017-1375-4

Keywords

Navigation