Akita M, Valkonen JPT (2002) A novel gene family in moss (Physcomitrella patens) shows sequence homology and a phylogenetic relationship with the TIR-NBS class of plant disease resistance genes. J Mol Evol 55:595–605
CAS
PubMed
Article
Google Scholar
Ameline-Torregrosa C, Wang BB, O’Bleness MS, Deshpande S, Zhu H, Roe B, Young ND, Cannon SB (2008) Identification and characterization of nucleotide-binding site-leucine-rich repeat genes in the model plant Medicago truncatula. Plant Physiol 146:5–21
CAS
PubMed
PubMed Central
Article
Google Scholar
Andersson MX, Kourtchenko O, Dangl JL, Mackey D, Ellerström M (2006) Phospholipase-dependent signalling during the AvrRpm1- and AvrRpt2-induced disease resistance responses in Arabidopsis thaliana. Plant J 47:947–959
CAS
PubMed
Article
Google Scholar
Arya P, Acharya V (2016) Computational identification raises a riddle for distribution of putative NACHT NTPases in the genome of early green plants. PLoS One 11:e0150634. doi:10.1371/journal.pone.0150634
PubMed
PubMed Central
Article
CAS
Google Scholar
Arya P, Kumar G, Acharya V, Singh AK (2014) Genome-wide identification and expression analysis of NBS-encoding genes in Malus × domestica and expansion of NBS genes family in Rosaceae. PLoS One 9:e107987. doi:10.1371/journal.pone.0107987
PubMed
PubMed Central
Article
CAS
Google Scholar
Ausubel FM (2005) Are innate immune signaling pathways in plants and animals conserved? Nat Immunol 6:973–979
CAS
PubMed
Article
Google Scholar
Cannon SB, Zhu H, Baumgarten AM, Spangler R, May G, Cook DR, Young ND (2002) Diversity, distribution, and ancient taxonomic relationships within the TIR and non-TIR NBS-LRR resistance gene subfamilies. J Mol Evol 54:548–562
CAS
PubMed
Article
Google Scholar
Catanzariti AM, Dodds PN, Ve T, Kobe B, Ellis JG, Staskawicz BJ (2010) The AvrM effector from flax rust has a structured C-terminal domain and interacts directly with the M resistance protein. Mol Plant Microbe Interact 23:49–57
CAS
PubMed
PubMed Central
Article
Google Scholar
Cesari S, Thilliez G, Ribot C, Chalvon V, Michel C, Jauneau A, Rivas S, Alaux L, Kanzaki H, Okuyama Y, Morel J-B, Fournier E, Tharreau D, Terauchi R, Kroj T (2013) The rice resistance protein pair RGA4/RGA5 recognizes the Magnaporthe oryzae effectors AVR-Pia and AVR1-CO39 by direct binding. Plant Cell 25:1463–1481
CAS
PubMed
PubMed Central
Article
Google Scholar
Cesari S, Bernoux M, Moncuquet P, Kroj T, Dodds PN (2014) A novel conserved mechanism for plant NLR protein pairs: the “integrated decoy” hypothesis. Front Plant Sci 5:606. doi:10.3389/fpls.2014.00606
PubMed
PubMed Central
Article
Google Scholar
Chen Y, Liu Z, Halterman DA (2012) Molecular determinants of resistance activation and suppression by phytophthora infestans effector IPI-O. PLoS Pathog 8(3):e1002595. doi:10.1371/journal.ppat.1002595
CAS
PubMed
PubMed Central
Article
Google Scholar
Cheng X, Jiang H, Zhao Y, Qian Y, Zhu S, Cheng B (2010) A genomic analysis of disease-resistance genes encoding nucleotide binding sites in Sorghum bicolor. Genet Mol Biol 33:292–297
CAS
PubMed
PubMed Central
Article
Google Scholar
Cheng Y, Li X, Jiang H, Ma W, Miao W, Yamada T, Zhang M (2012) Systematic analysis and comparison of nucleotide-binding site disease resistance genes in maize. FEBS J 279:2431–2443
CAS
PubMed
Article
Google Scholar
Cheung MY, Xue Y, Zhou L, Li MW, Sun SS, Lam HM (2010) An ancient P-loop GTPase in rice is regulated by a higher plant-specific regulatory protein. J Biol Chem 285:37359–37369
CAS
PubMed
PubMed Central
Article
Google Scholar
Cheung MY, Li MW, Yung YL, Wen CQ, Lam HM (2013) The unconventional P-loop NTPase OsYchF1 and its regulator OsGAP1 play opposite roles in salinity stress tolerance. Plant Cell Environ 36:2008–2020
CAS
PubMed
Google Scholar
Cheung MY, Li X, Miao R, Fong YH, Li KP, Yung YL, Yu MH, Wong KB, Chen Z, Lam HM (2016) ATP binding by the P-loop NTPase OsYchF1 (an unconventional G protein) contributes to biotic but not abiotic stress responses. Proc Natl Acad Sci USA 113:2648–2653
CAS
PubMed
PubMed Central
Article
Google Scholar
Christie N, Tobias PA, Naidoo S, Külheim C (2016) The Eucalyptus grandis NBS-LRR gene family: physical clustering and expression hotspots. Front Plant Sci 6:1238. doi:10.3389/fpls.2015.01238
PubMed
PubMed Central
Article
Google Scholar
Dangl JL, Jones JD (2001) Plant pathogens and integrated defence responses to infection. Nature 411:826–833
CAS
PubMed
Article
Google Scholar
Deslandes L, Olivier J, Peeters N, Feng DX, Khounlotham M, Boucher C, Somssich I, Genin S, Marco Y (2003) Physical interaction between RRS1-R, a protein conferring resistance to bacterial wilt, and PopP2, a type III effector targeted to the plant nucleus. Proc Natl Acad Sci USA 100:8024–8029
CAS
PubMed
PubMed Central
Article
Google Scholar
Dodds PN, Rathjen JP (2010) Plant immunity: towards an integrated view of plant–pathogen interactions. Nat Rev Genet 11:539–548
CAS
PubMed
Article
Google Scholar
Dodds PN, Lawrence GJ, Catanzariti A-M, Teh T, Wang CI, Ayliffe MA, Kobe B, Ellis JG (2006) Direct protein interaction underlies gene-for-gene specificity and coevolution of the flax resistance genes and flax rust avirulence genes. Proc Natl Acad Sci USA 103:8888–8893
CAS
PubMed
PubMed Central
Article
Google Scholar
Flor HH (1971) Current status of the gene-for-gene concept. Annu Rev Phytopathol 9(1):275–296
Article
Google Scholar
Force A, Lynch M, Pickett FB, Amores A, Yan YL, Postlethwait J (1999) Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151:1531–1545
CAS
PubMed
PubMed Central
Google Scholar
Friedman AR, Baker BJ (2007) The evolution of resistance genes in multi-protein plant resistance systems. Curr Opin Genet Dev 17:493–499
CAS
PubMed
Article
Google Scholar
Gassmann W, Hinsch ME, Staskawicz BJ (1999) The Arabidopsis RPS4 bacterial-resistance gene is a member of the TIR-NBS-LRR family of disease-resistance genes. Plant J 20:265–277
CAS
PubMed
Article
Google Scholar
Guo YL, Fitz J, Schneeberger K, Ossowski S, Cao J, Weigel D (2011) Genome-wide comparison of nucleotide-binding site-leucine-rich repeat-encoding genes in Arabidopsis. Plant Physiol 157:757–769
CAS
PubMed
PubMed Central
Article
Google Scholar
Gururani MA, Venkatesh J, Upadhyaya CP, Akula Nookaraju, Pandey SK, Park SW (2012) Plant disease resistance genes: current status and future directions. Physiol Mol Plant Pathol 78:51–65
CAS
Article
Google Scholar
Holt BF, Boyes DC, Ellerström M, Siefers N, Wiig A, Kauffman S, Grant MR, Dangl JL (2002) An evolutionarily conserved mediator of plant disease resistance gene function is required for normal Arabidopsis development. Dev Cell 2:807–817
PubMed
Article
Google Scholar
Holub EB (2001) The arms race is ancient history in Arabidopsis, the wildflower. Nat Rev Genet 2:516–527
CAS
PubMed
Article
Google Scholar
Hulbert SH, Webb CA, Smith SM, Sun Q (2001) Resistance gene complexes: evolution and utilization. Annu Rev Phytopathol 39:285–312
CAS
PubMed
Article
Google Scholar
Igari K, Endo S, Hibara K, Aida M, Sakakibara H, Kawasaki T, Tasaka M (2008) Constitutive activation of a CC-NB-LRR protein alters morphogenesis through the cytokinin pathway in Arabidopsis. Plant J 55:14–27
CAS
PubMed
Article
Google Scholar
Inohara N, Chamaillard M, McDonald C, Nuñez G (2005) NOD-LRR PROTEINS: role in host–microbial interactions and inflammatory disease. Annu Rev Biochem 74:355–383
CAS
PubMed
Article
Google Scholar
Jacob F, Vernaldi S, Maekawa T (2013) Evolution and conservation of plant NLR functions. Front Immunol 4:297–316. doi:10.3389/fimmu.2013.00297
PubMed
PubMed Central
Article
CAS
Google Scholar
Jia Y, McAdams SA, Bryan GT, Hershey HP, Valent B (2000) Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. EMBO J 19:4004–4014
CAS
PubMed
PubMed Central
Article
Google Scholar
Jia Y, Yuan Y, Zhang Y, Yang S, Zhang X (2015) Extreme expansion of NBS-encoding genes in Rosaceae. BMC Genet 16:48. doi:10.1186/s12863-015-0208-x
PubMed
PubMed Central
Article
CAS
Google Scholar
Jones JD, Dangl JL (2006) The plant immune system. Nature 444:323–329
CAS
PubMed
Article
Google Scholar
Joshi RK, Nayak S (2013) Perspectives of genomic diversification and molecular recombination towards R-gene evolution in plants. Physiol Mol Biol Plants 19:1–9
CAS
PubMed
Article
Google Scholar
Joshi RK, Kar B, Nayak S (2011) Survey and characterization of NBS-LRR (R) genes in Curcuma longa transcriptome. Bioinformation 6:360–363
PubMed
PubMed Central
Article
Google Scholar
Jupe F, Pritchard L, Etherington GJ, Mackenzie K, Cock PJ, Wright F, Sharma SK, Bolser D, Bryan GJ, Jones JD, Hein I (2012) Identification and localisation of the NB-LRR gene family within the potato genome. BMC Genom 13:75. doi:10.1186/1471-2164-13-75
CAS
Article
Google Scholar
Kang L, Li J, Zhao T, Xiao F, Tang X, Thilmony R, He SY, Zhou J-M (2003) Interplay of the Arabidopsis nonhost resistance gene NHO1 with bacterial virulence. Proc Natl Acad Sci USA 100:3519–3524
CAS
PubMed
PubMed Central
Article
Google Scholar
Kang YJ, Kim KH, Shim S, Yoon MY, Sun S, Kim MY, Van K, Lee S-H (2012) Genome-wide mapping of NBS-LRR genes and their association with disease resistance in soybean. BMC Plant Biol 12:139. doi:10.1186/1471-2229-12-139
CAS
PubMed
PubMed Central
Article
Google Scholar
Kanzaki H, Yoshida K, Saitoh H, Fujisaki K, Hirabuchi A, Alaux L, Fournier E, Tharreau D, Terauchi R (2012) Arms race co-evolution of Magnaporthe oryzae AVR-Pik and rice Pik genes driven by their physical interactions. Plant J 72:894–907
CAS
PubMed
Article
Google Scholar
Kim J, Lim CJ, Lee BW, Choi JP, Oh SK, Ahmad R, Kwon SY, Ahn J, Hur CG (2012) A genome-wide comparison of NB-LRR type of resistance gene analogs (RGA) in the plant kingdom. Mol Cells 33:385–392
CAS
PubMed
PubMed Central
Article
Google Scholar
Kohler A, Rinaldi C, Duplessis S, Baucher M, Geelen D, Duchaussoy F, Meyers BC, Boerjan W, Martin F (2008) Genome-wide identification of NBS resistance genes in Populus trichocarpa. Plant Mol Biol 66:619–636
CAS
PubMed
Article
Google Scholar
Koonin EV, Aravind L (2000) The NACHT family—a new group of predicted NTPases implicated in apoptosis and MHC transcription activation. Trends Biochem Sci 25:223–224
CAS
PubMed
Article
Google Scholar
Krasileva KV, Dahlbeck D, Staskawicz BJ (2010) Activation of an Arabidopsis resistance protein is specified by the in planta association of its leucine-rich repeat domain with the cognate oomycete effector. Plant Cell 22:2444–2458
CAS
PubMed
PubMed Central
Article
Google Scholar
Kroj T, Chanclud E, Michel-Romiti C, Grand X, Morel JB (2016) Integration of decoy domains derived from protein targets of pathogen effectors into plant immune receptors is widespread. New Phytol 210:618–626
CAS
PubMed
PubMed Central
Article
Google Scholar
Kuang H, Woo S-S, Meyers BC, Nevo E, Michelmore RW (2004) Multiple genetic processes result in heterogeneous rates of evolution within the major cluster disease resistance genes in lettuce. Plant Cell 16:2870–2894
CAS
PubMed
PubMed Central
Article
Google Scholar
Lawrence GJ, Finnegan EJ, Ayliffe MA, Ellis JG (1995) The L6 gene for flax rust resistance is related to the Arabidopsis bacterial resistance gene RPS2 and the tobacco viral resistance gene N. Plant Cell 7:1195–1206
CAS
PubMed
PubMed Central
Article
Google Scholar
Leipe DD, Wolf YI, Koonin EV, Aravind L (2002) Classification and evolution of P-loop GTPases and related ATPases. J Mol Biol 317:41–72
CAS
PubMed
Article
Google Scholar
Leipe DD, Koonin EV, Aravind L (2004) STAND, a class of P-loop NTPases including animal and plant regulators of programmed cell death: multiple, complex domain architectures, unusual phyletic patterns, and evolution by horizontal gene transfer. J Mol Biol 343:1–28
CAS
PubMed
Article
Google Scholar
Leister D (2004) Tandem and segmental gene duplication and recombination in the evolution of plant disease resistance genes. Trends Genet 20:116–122
CAS
PubMed
Article
Google Scholar
Li X, Cheng Y, Ma W, Zhao Y, Jiang H, Zhang M (2010) Identification and characterization of NBS-encoding disease resistance genes in Lotus japonicus. Plant Syst Evol 289:101–110
Article
Google Scholar
Lin X, Zhang Y, Kuang H, Chen J (2013) Frequent loss of lineages and deficient duplications accounted for low copy number of disease resistance genes in Cucurbitaceae. BMC Genom 14:335. doi:10.1186/1471-2164-14-335
CAS
Article
Google Scholar
Liu J-J, Ekramoddoullah AKM (2003) Isolation, genetic variation and expression of TIR-NBS-LRR resistance gene analogs from western white pine (Pinus monticola Dougl. ex. D. Don.). Mol Genet Genom 270:432–441
CAS
Article
Google Scholar
Liu S, Liu Y, Yang X et al (2014) The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nat Commun 5:3930. doi:10.1038/ncomms4930
CAS
PubMed
PubMed Central
Google Scholar
Lozano R, Ponce O, Ramirez M, Mostajo N, Orjeda G (2012) Genome-wide identification and mapping of NBS-encoding resistance genes in Solanum tuberosum group phureja. PLoS One 7:e34775. doi:10.1371/journal.pone.0034775
CAS
PubMed
PubMed Central
Article
Google Scholar
Luo S, Zhang Y, Hu Q, Chen J, Li K, Lu C, Liu H, Wang W, Kuang H (2012) Dynamic nucleotide-binding site and leucine-rich repeat-encoding genes in the grass family. Plant Physiol 159:197–210
CAS
PubMed
PubMed Central
Article
Google Scholar
Lv S, Changwei Z, Tang J, Li Y, Wang Z, Jiang D, Hou X (2015) Genome-wide analysis and identification of TIR-NBS-LRR genes in Chinese cabbage (Brassica rapa ssp. pekinensis) reveal expression patterns to TuMV infection. Physiol Mol Plant Pathol 90:89–97
CAS
Article
Google Scholar
Malik S, Van der Hoorn RAL (2016) Inspirational decoys: a new hunt for effector targets. New Phytol 210:371–373
PubMed
Article
Google Scholar
Marone D, Russo MA, Laidò G, De Leonardis AM, Mastrangelo AM (2013) Plant nucleotide binding site-leucine-rich repeat (NBS-LRR) genes: active guardians in host defense responses. Int J Mol Sci 14:7302–7326
CAS
PubMed
PubMed Central
Article
Google Scholar
Martin GB, Brommonschenkel SH, Chunwongse J, Frary A, Ganal MW, Spivey R, Wu T, Earle ED, Tanksley SD (1993) Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science 262:1432–1436
CAS
PubMed
Article
Google Scholar
McDowell JM, Simon SA (2006) Recent insights into R gene evolution. Mol Plant Pathol 7:437–448
CAS
PubMed
Article
Google Scholar
McHale L, Tan X, Koehl P, Michelmore RW (2006) Plant NBS-LRR proteins: adaptable guards. Genome Biol 7:212
PubMed
PubMed Central
Article
CAS
Google Scholar
Meyers BC, Dickerman AW, Michelmore RW, Sivaramakrishnan S, Sobral BW, Young ND (1999) Plant disease resistance genes encode members of an ancient and diverse protein family within the nucleotide-binding superfamily. Plant J 20:317–332
CAS
PubMed
Article
Google Scholar
Meyers BC, Morgante M, Michelmore RW (2002) TIR-X and TIR-NBS proteins: two new families related to disease resistance TIR-NBS-LRR proteins encoded in Arabidopsis and other plant genomes. Plant J 32:77–92
CAS
PubMed
Article
Google Scholar
Meyers B, Kozik A, Griego A, Kuang H, Michelmore RW (2003) Genome-wide analysis of NBS-LRR—encoding genes in Arabidopsis. Plant Cell 15:809–834
CAS
PubMed
PubMed Central
Article
Google Scholar
Meyers BC, Kaushik S, Nandety RS (2005) Evolving disease resistance genes. Curr Opin Plant Biol 8:129–134
CAS
PubMed
Article
Google Scholar
Michelmore RW, Meyers BC (1998) Clusters of resistance genes in plants evolve by divergent selection and a birth-and-death process. Genome Res 8:1113–1130
CAS
PubMed
Article
Google Scholar
Monosi B, Wisser RJ, Pennill L, Hulbert SH (2004) Full-genome analysis of resistance gene homologues in rice. Theor Appl Genet 109:1434–1447
CAS
PubMed
Article
Google Scholar
Mucyn TS, Clemente A, Andriotis VM, Balmuth AL, Oldroyd GE, Staskawicz BJ, Rathjen JP (2006) The tomato NBARC-LRR protein Prf interacts with Pto kinase in vivo to regulate specific plant immunity. Plant Cell 18:2792–2806
CAS
PubMed
PubMed Central
Article
Google Scholar
Mun JH, Yu HJ, Park S, Park BS (2009) Genome-wide identification of NBS-encoding resistance genes in Brassica rapa. Mol Genet Genom 282:617–631
CAS
Article
Google Scholar
Ntoukakis V, Balmuth AL, Mucyn TS, Gutierrez JR, Jones AM, Rathjen JP (2013) The tomato Prf complex is a molecular trap for bacterial effectors based on Pto transphosphorylation. PLoS Pathog 9:e1003123. doi:10.1371/journal.ppat.1003123
CAS
PubMed
PubMed Central
Article
Google Scholar
Okuyama Y, Kanzaki H, Abe A, Yoshida K, Tamiru M, Saitoh H, Fujibe T, Matsumura H, Shenton M, Galam DC, Undan J, Ito A, Sone T, Terauchi R (2011) A multifaceted genomics approach allows the isolation of the rice Pia-blast resistance gene consisting of two adjacent NBS-LRR protein genes. Plant J 66:467–479
CAS
PubMed
Article
Google Scholar
Pan Q, Wendel J, Fluhr R (2000) Divergent evolution of plant NBS-LRR resistance gene homologues in dicot and cereal genomes. J Mol Evol 50:203–213
CAS
PubMed
Article
Google Scholar
Papp B, Pál C, Hurst LD (2003) Dosage sensitivity and the evolution of gene families in yeast. Nature 424:194–197
CAS
PubMed
Article
Google Scholar
Perazzolli M, Malacarne G, Baldo A, Righetti L, Bailey A, Fontana P, Velasco R, Malnoy M (2014) Characterization of resistance gene analogues (RGAs) in apple (Malus × domestica Borkh.) and their evolutionary history of the Rosaceae family. PLoS One 9:e83844. doi:10.1371/journal.pone.0083844
PubMed
PubMed Central
Article
CAS
Google Scholar
Porter B, Paidi M, Ming R, Alam M, Nishijima WT, Zhu YJ (2009) Genome-wide analysis of Carica papaya reveals a small NBS resistance gene family. Mol Genet Genom 281(6):609–626
CAS
Article
Google Scholar
Qian S, Wang Y, Ma H, Zhang L (2015) Expansion and functional divergence of jumonji C-containing histone demethylases: significance of duplications in ancestral angiosperms and vertebrates. Plant Physiol 168:1321–1337
CAS
PubMed
PubMed Central
Article
Google Scholar
Rairdan G, Moffett P (2007) Brothers in arms? Common and contrasting themes in pathogen perception by plant NB-LRR and animal NACHT-LRR proteins. Microbes Infect 9:677–686
CAS
PubMed
Article
Google Scholar
Richly E, Kurth J, Leister D (2002) Mode of amplification and reorganization of resistance genes during recent Arabidopsis thaliana evolution. Mol Biol Evol 19:76–84
CAS
PubMed
Article
Google Scholar
Salmeron JM, Barker SJ, Carland FM, Mehta AY, Staskawicz BJ (1994) Tomato mutants altered in bacterial disease resistance provide evidence for a new locus controlling pathogen recognition. Plant Cell 6:511–520
CAS
PubMed
PubMed Central
Article
Google Scholar
Sarris PF, Cevik V, Dagdas G, Jones JD, Krasileva KV (2016) Comparative analysis of plant immune receptor architectures uncovers host proteins likely targeted by pathogens. BMC Biol 14:8. doi:10.1186/s12915-016-0228-7
PubMed
PubMed Central
Article
CAS
Google Scholar
Savard L, Li P, Strauss SH, Chase MW, Michaud M, Bousquet J (1994) Chloroplast and nuclear gene sequences indicate late Pennsylvanian time for the last common ancestor of extant seed plants. Proc Natl Acad Sci USA 91:5163–5167
CAS
PubMed
PubMed Central
Article
Google Scholar
Schornack S, Minsavage GV, Stall RE, Jones JB, Lahaye T (2008) Characterization of AvrHah1, a novel AvrBs3-like effector from Xanthomonas gardneri with virulence and avirulence activity. New Phytol 179:546–556
CAS
PubMed
Article
Google Scholar
Selin C, de Kievit TR, Belmonte MF, Fernando WGD (2016) Elucidating the role of effectors in plant–fungal interactions: progress and challenges. Front Microbiol 7:600. doi:10.3389/fmicb.2016.00600
PubMed
PubMed Central
Article
Google Scholar
Shabab M, Shindo T, Gu C, Kaschani F, Pansuriya T, Chintha R, Harzen A, Colby T, Kamoun S, van der Hoorn RA (2008) Fungal effector protein AVR2 targets diversifying defense-related cys proteases of tomato. Plant Cell 20:1169–1183
CAS
PubMed
PubMed Central
Article
Google Scholar
Shao F, Golstein C, Ade J, Stoutemyer M, Dixon JE, Innes RW (2003) Cleavage of Arabidopsis PBS1 by a bacterial type III effector. Science 301:1230–1233
CAS
PubMed
Article
Google Scholar
Shao ZQ, Zhang YM, Hang YY, Xue JY, Zhou GC, Wu P, Wu XY, Wu XZ, Wang Q, Wang B, Chen JQ (2014) Long-term evolution of nucleotide-binding site-leucine-rich repeat genes: understanding gained from and beyond the legume family. Plant Physiol 166:217–234
PubMed
PubMed Central
Article
CAS
Google Scholar
Shao ZQ, Xue JY, Wu P, Zhang YM, Wu Y, Hang YY, Wang B, Chen JQ (2016) Large-scale analyses of angiosperm nucleotide-binding site-leucine-rich repeat (NBS-LRR) genes reveal three anciently diverged classes with distinct evolutionary patterns. Plant Physiol 170:2095–2109
CAS
PubMed
PubMed Central
Article
Google Scholar
Tan S, Wu S (2012) Genome wide analysis of nucleotide-binding site disease resistance genes in Brachypodium distachyon. Comp Funct Genom 2012:418208. doi:10.1155/2012/418208
Article
CAS
Google Scholar
Tarr DEK, Alexander HM (2009) TIR-NBS-LRR genes are rare in monocots: evidence from diverse monocot orders. BMC Res Notes 2:197. doi:10.1186/1756-0500-2-197
PubMed
PubMed Central
Article
CAS
Google Scholar
Ueda H, Yamaguchi Y, Sano H (2006) Direct interaction between the tobacco mosaic virus helicase domain and the ATP-bound resistance protein, N factor during the hypersensitive response in tobacco plants. Plant Mol Biol 61:31–45
CAS
PubMed
Article
Google Scholar
van der Biezen EA, Jones JD (1998a) The NB-ARC domain: a novel signalling motif shared by plant resistance gene products and regulators of cell death in animals. Curr Biol 8:R226–R228
PubMed
Article
Google Scholar
van der Biezen EA, Jones JD (1998b) Plant disease-resistance proteins and the gene-for-gene concept. Trends Biochem Sci 23:454–456
PubMed
Article
Google Scholar
van der Hoorn RAL, Kamoun S (2008) From guard to decoy: a new model for perception of plant pathogen effectors. Plant Cell 20:2009–2017
PubMed
PubMed Central
Article
CAS
Google Scholar
van Ooijen G, van den Burg HA, Cornelissen BJC, Takken FLW (2007) Structure and function of resistance proteins in Solanaceous plants. Annu Rev Phytopathol 45:43–72
PubMed
Article
CAS
Google Scholar
Wan H, Zhao Z, Malik AA, Qian C, Chen J (2010) Identification and characterization of potential NBS-encoding resistance genes and induction kinetics of a putative candidate gene associated with downy mildew resistance in Cucumis. BMC Plant Biol 10:186. doi:10.1186/1471-2229-10-186
PubMed
PubMed Central
Article
CAS
Google Scholar
Wan H, Yuan W, Ye Q, Wang R, Ruan M, Li Z, Zhou G, Yao Z, Zhao J, Liu S, Yang Y (2012) Analysis of TIR- and non-TIR-NBS-LRR disease resistance gene analogous in pepper: characterization, genetic variation, functional divergence and expression patterns. BMC Genom 13:502. doi:10.1186/1471-2164-13-502
CAS
Article
Google Scholar
Wan H, Yuan W, Bo K, Shen J, Pang X, Chen J (2013) Genome-wide analysis of NBS-encoding disease resistance genes in Cucumis sativus and phylogenetic study of NBS-encoding genes in Cucurbitaceae crops. BMC Genom 14:109. doi:10.1186/1471-2164-14-109
CAS
Article
Google Scholar
Whitham S, Dinesh-Kumar SP, Choi D, Hehl R, Corr C, Baker B (1994) The product of the tobacco mosaic virus resistance gene N: similarity to toll and the interleukin-1 receptor. Cell 78:1101–1115
CAS
PubMed
Article
Google Scholar
Williams SJ, Sohn KH, Wan L, Bernoux M, Sarris PF, Segonzac C, Ve T, Ma Y, Saucet SB, Ericsson DJ, Casey LW, Lonhienne T, Winzor DJ, Zhang X, Coerdt A, Parker JE, Dodds PN, Kobe B, Jones JD (2014) Structural basis for assembly and function of a heterodimeric plant immune receptor. Science 344:299–303
CAS
PubMed
Article
Google Scholar
Win J, Chaparro-Garcia A, Belhaj K, Saunders DG, Yoshida K, Dong S, Schornack S, Zipfel C, Robatzek S, Hogenhout SA, Kamoun S (2012) Effector biology of plant-associated organisms: concepts and perspectives. Cold Spring Harb Symp Quant Biol 77:235–247
CAS
PubMed
Article
Google Scholar
Wu C-H, Krasileva KV, Banfield MJ, Terauchi R, Kamoun S (2015) The “sensor domains” of plant NLR proteins: more than decoys? Front Plant Sci 6:134. doi:10.3389/fpls.2015.00134
PubMed
PubMed Central
Google Scholar
Xiao S, Ellwood S, Calis O, Patrick E, Li T, Coleman M, Turner JG (2001) Broad-spectrum mildew resistance in Arabidopsis thaliana mediated by RPW8. Science 291:118–120
CAS
PubMed
Article
Google Scholar
Xue J-Y, Wang Y, Wu P, Wang Q, Yang LT, Pan XH, Wang B, Chen JQ (2012) A primary survey on bryophyte species reveals two novel classes of nucleotide-binding site (NBS) genes. PLoS One 7:e36700. doi:10.1371/journal.pone.0036700
CAS
PubMed
PubMed Central
Article
Google Scholar
Yang S, Feng Z, Zhang X, Jiang K, Jin X, Hang Y, Chen JQ, Tian D (2006) Genome-wide investigation on the genetic variations of rice disease resistance genes. Plant Mol Biol 62:181–193
CAS
PubMed
Article
Google Scholar
Yang S, Zhang X, Yue JX, Tian D, Chen JQ (2008) Recent duplications dominate NBS-encoding gene expansion in two woody species. Mol Genet Genom 280:187–198
CAS
Article
Google Scholar
Young ND, Zhou P, Silverstein KA (2016) Exploring structural variants in environmentally sensitive gene families. Curr Opin Plant Biol 30:19–24
CAS
PubMed
Article
Google Scholar
Yu J, Tehrim S, Zhang F, Tong C, Huang J, Cheng X, Dong C, Zhou Y, Qin R, Hua W, Liu S (2014) Genome-wide comparative analysis of NBS-encoding genes between Brassica species and Arabidopsis thaliana. BMC Genom 15:3. doi:10.1186/1471-2164-15-3
Article
Google Scholar
Yue JX, Meyers BC, Chen JQ, Tian D, Yang S (2012) Tracing the origin and evolutionary history of plant nucleotide-binding site-leucine-rich repeat (NBS-LRR) genes. New Phytol 193:1049–1063
CAS
PubMed
Article
Google Scholar
Zhai C, Zhang Y, Yao N, Lin F, Liu Z, Dong Z, Wang L, Pan Q (2014) Function and interaction of the coupled genes responsible for Pik-h encoded rice blast resistance. PLoS One 9:e98067. doi:10.1371/journal.pone.0098067
PubMed
PubMed Central
Article
CAS
Google Scholar
Zhang YM, Shao ZQ, Wang Q, Hang YY, Xue JY, Wang B, Chen JQ (2016) Uncovering the dynamic evolution of nucleotide-binding site-leucine-rich repeat (NBS-LRR) genes in Brassicaceae. J Integr Plant Biol 58:165–177
CAS
PubMed
Article
Google Scholar
Zhou J-M, Chai J (2008) Plant pathogenic bacterial type III effectors subdue host responses. Curr Opin Microbiol 11:179–185
PubMed
Article
CAS
Google Scholar
Zhou T, Wang Y, Chen JQ, Araki H, Jing Z, Jiang K, Shen J, Tian D (2004) Genome-wide identification of NBS genes in japonica rice reveals significant expansion of divergent non-TIR NBS-LRR genes. Mol Genet Genom 271:402–415
CAS
Article
Google Scholar
Zipfel C, Rathjen JP (2008) Plant immunity: AvrPto targets the frontline. Curr Biol 18:R218–R220
CAS
PubMed
Article
Google Scholar