Advertisement

Molecular Genetics and Genomics

, Volume 292, Issue 5, pp 935–953 | Cite as

Salivary miR-16, miR-191 and miR-223: intuitive indicators of dominant ovarian follicles in buffaloes

  • Prashant Singh
  • Naresh Golla
  • Pankaj Singh
  • Vijay Simha Baddela
  • Subhash Chand
  • Rubina Kumari Baithalu
  • Dheer Singh
  • Suneel Kumar Onteru
Original Article

Abstract

Estrus or sexual receptivity determination is utmost important for efficient breeding programs for female buffaloes. Prominent estrus behavioral symptoms are the result of several molecular and neuroendocrine events involving the ovary and the brain. Expression of estrus behavior is poor in buffaloes during the summer season. Hence, the discovery of biomarkers specific to the estrus stage or its related ovarian events, like the presence of dominant ovarian follicle, is helpful for developing an easy estrus determination method. MicroRNA are small non-coding RNA with a potential to be biomarkers. Therefore, the present study targeted to investigate the potential of estrogen responsive miRNAs (miR-24, miR-200c, miR-16, miR-191, miR-223 and miR-203) as estrus biomarkers in buffalo saliva, a non-invasive fluid representing animals’ pathophysiology. There was a significant (P < 0.05) increase in the salivary presence of the miR-16, miR-191 and miR-223 at 6th and 18th–19th days than the 0 day (estrus), 10th day and the following consecutive estrus day. These observations may indicate an association between the representative lower presence of these miRNA in saliva and the presence of dominant ovarian follicles. To test this association, pathway analysis, target gene identification, functional annotation and protein–protein interaction networks (PPI) were performed for miR-16, miR-191 and miR-223 by different bioinformatics tools. Interestingly, the top pathways (fatty acid biosynthesis and oocyte meiosis), target genes (FGF, BDNF and IGF1) and PPI hub genes (KRAS, BCL2 and IGF1) of these miRNAs were found essential for ovarian follicular dominance. In conclusion, the miR-16, miR-191 and miR-223 may not be the perfect estrus stage-specific biomarkers. However, their lower presence in saliva at estrus and 9th–10th day of estrous cycles, when the ovary usually has a dominant follicle in buffaloes, may intuitively indicate the follicular dominance. Further studies are needed to prove this association in a large population.

Keywords

Salivary microRNA qRT-PCR Estrus Dominant follicle Buffaloes 

Notes

Acknowledgements

The authors are thankful to ICAR-NDRI and ICAR-NASF for their financial assistance to this work. We also thank Livestock Research Center, ICAR-NDRI, and farm personnel for the management and handling of buffaloes during the saliva sample collection.

Compliance with ethical standards

Funding

The present work was funded by ICAR-National Dairy Research Institute (ICAR-NDRI), Karnal, India (Project No. IXX10906), and ICAR-National Agriculture Science Foundation (ICAR-NASF), Indian Council of Agricultural Research, New Delhi, Government of India (Project No. OXX03374).

Conflict of interest

The authors have no financial and non-financial competing interests with other people and organizations influencing the paper content.

Author list discrepancy statement

We added an additional author Pankaj Singh as a third author in the revised manuscript. As the major revision needed the provision of an additional data to prove specificity of the amplified miRNA products, we have cloned and sequenced three amplified miRNA products. Pankaj Singh contributed the cloning and sequencing work. Hence, his name is included as a third author. All other co-authors agreed in this regard.

Ethics approval

An institutional Animal Ethics Committee (IAEC) of the ICAR-National Dairy Research Institute, Karnal, India, a registered ethics committee of CPCSEA (Reg No. 1705/GO/ac/13/CPCSEA) approved animals for sample collection in this research work under the Project Nos. IXX10906 and OXX03374. Accordingly, “all applicable international, national, and/or institutional guidelines for the care and use of animals were followed”.

Supplementary material

438_2017_1323_MOESM1_ESM.xlsx (27 kb)
Supplementary material 1 (XLSX 26 kb)

References

  1. Baruselli PS, Mucciolo RG, Visintin JA, Viana WG, Arruda RP, Madureira EH, Oliveira CA, Molero-Filho JR (1997) Ovarian follicular dynamics during the estrous cycle in buffalo (Bubalus bubalis). Theriogenology 47:1531–1547CrossRefPubMedGoogle Scholar
  2. Berisha B, Sinowatz F, Schams D (2004) Expression and localization of fibroblast growth factor (FGF) family members during the final growth of bovine ovarian follicles. Mol Reprod Dev 67:162–171CrossRefPubMedGoogle Scholar
  3. Cannon JD, Cherian-Shaw M, Chaffin CL (2005) Proliferation of rat granulosa cells during the periovulatory interval. Endocrinology 146:414–422CrossRefPubMedGoogle Scholar
  4. Carletti MZ, Christenson LK (2009) Rapid effects of LH on gene expression in the mural granulosa cells of mouse periovulatory follicles. Reproduction 137:843–855CrossRefPubMedPubMedCentralGoogle Scholar
  5. Castellano L, Giamas G, Jacob J, Coombes RC, Lucchesi W, Thiruchelvam P, Barton G, Jiao LR, Wait R, Waxman J, Hannon GJ, Stebbing J (2009) The estrogen receptor-α-induced microRNA signature regulates itself and its transcriptional response. PNAS 106:15732–15737CrossRefPubMedPubMedCentralGoogle Scholar
  6. Clarke HG, Hope SA, Byers S, Rodgers RJ (2006) Formation of ovarian follicular fluid may be due to the osmotic potential of large glycosaminoglycans and proteoglycans. Reproduction 132:119–131CrossRefPubMedGoogle Scholar
  7. Di Leva G, Piovan C, Gasparini P, Ngankeu A, Taccioli C, Briskin D, Cheung DG, Bolon B, Anderlucci L, Alder H, Nuovo G, Li M, Iorio MV, Galasso M, Santanam R, Marcucci G, Perrotti D, Powell KA, Bratasz A, Garofalo M, Nephew KP, Croce CM (2013) Estrogen mediated-activation of 191/425 cluster modulates tumorigenicity of breast cancer cells depending on estrogen receptor status. PLoS Genet 9:e1003311CrossRefPubMedPubMedCentralGoogle Scholar
  8. Dias FC, Khan MI, Sirard MA, Adams GP, Singh J (2013) Differential gene expression of granulosa cells after ovarian super stimulation in beef cattle. Reproduction 146:181–191CrossRefPubMedGoogle Scholar
  9. Dunning KR, Russell DL, Robker RL (2014) Lipids and oocyte developmental competence: the role of fatty acids and β-oxidation. Reproduction 148:R15–R27CrossRefPubMedGoogle Scholar
  10. Fan HY, Liu Z, Paquet M, Wang J, Lydon JP, DeMayo FJ, Richards JS (2009) Cell type–specific targeted mutations of Kras and Pten document proliferation arrest in granulosa cells versus oncogenic insult to ovarian surface epithelial cells. Cancer Res 69:6463–6472CrossRefPubMedPubMedCentralGoogle Scholar
  11. Friedman RC, Farh KK, Burge CB, Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19:92–105CrossRefPubMedPubMedCentralGoogle Scholar
  12. Kawamura K, Kawamura N, Mulders SM, Gelpke MD, Hsueh AJW (2005) Ovarian brain-derived neurotrophic factor (BDNF) promotes the development of oocytes into preimplantation embryos. PNAS 102:9206–9211CrossRefPubMedPubMedCentralGoogle Scholar
  13. Knight PG, Glister C (2006) TGF-β superfamily members and ovarian follicle development. Reproduction 132:191–206CrossRefPubMedGoogle Scholar
  14. Kumar PR, Shukla SN, Shrivastava OP, Purkayastha RD (2013) Incidence of postpartum anestrus among buffaloes in and around Jabalpur. Vet World 6:716–719CrossRefGoogle Scholar
  15. Kumaresan A, Ansari MR, Sanwal PC (2001) Assessment of the accuracy of oestrus detection by progesterone assay in cattle and buffaloes. Indian J Anim Sci 71:34–36Google Scholar
  16. Li R, Albertini DF (2013) The road to maturation: somatic cell interaction and self- organization of the mammalian oocyte. Nat Rev Mol Cell Biol 14:141–152CrossRefPubMedGoogle Scholar
  17. Nagpal N, Ahmad HM, Molparia B, Kulshrestha R (2013) MicroRNA-191, an estrogen-responsive microRNA, function as an oncogenic regulator in human breast cancer. Carcinogenesis 34:1889–1899CrossRefPubMedGoogle Scholar
  18. Noseir WMB (2003) Ovarian follicular activity and hormonal profile during estrous cycle in cows: the development of 2 versus 3 waves. RB&E 1:1Google Scholar
  19. Patel SR, Jakymiw A, Yao B, Pauley BA, Carcamo WC, Katz J, Cheng JQ, Chan EKL (2011) High resolution of microRNA signatures in human whole saliva. Arch Oral Biol 56:1506–1513CrossRefPubMedPubMedCentralGoogle Scholar
  20. Pavlopoulos GA, Secrier M, Moschopoulos CN, Soldatos TG, Kossida S, Aerts J, Schneider R, Bagos PG (2011) Using graph theory to analyze biological networks. BioData Min 4:1CrossRefGoogle Scholar
  21. Queiros AM, Eschen C, Fliegner D, Kararigas G, Dworatzek E, Westphal C, Ruderisch HS, Regitz-Zagrosek V (2013) Sex-and estrogen-dependent regulation of a microRNA network in the healthy and hypertrophied heart. Int J Cardiol 169:331–338CrossRefPubMedGoogle Scholar
  22. Ravinder R, Kaipa O, Baddela VS, Sinha ES, Singh P, Nayan V, Velagala CSN, Baithalu RK, Onteru SK, Singh D (2016) Saliva ferning, an unorthodox estrus detection method in water buffaloes (Bubalus bubalis). Theriogenology 86:1147–1157CrossRefPubMedGoogle Scholar
  23. Salilew-Wondim D, Ahmad I, Gebremedhn S, Sahadevan S, Hossain MM, Rings F, Hoelker M, Tholen E, Neuhoff C, Looft C, Schellander K, Tesfaye D (2014) The expression pattern of microRNAs in granulosa cells of subordinate and dominant follicles during the early luteal phase of the bovine estrous cycle. PLoS One 9:e106795CrossRefPubMedPubMedCentralGoogle Scholar
  24. Seifer DB, Feng BO, Shelden RM, Chen S, Dreyfus CF (2002) Brain-derived neurotrophic factor: a novel human ovarian follicular protein. J Clin Endocrinol Metab 87:655–659CrossRefPubMedGoogle Scholar
  25. Sharma HC, Dhami AJ, Sharma SK, Sarvaiya NP, Kavani FS (2008) Assessment of estrus detection and insemination efficiency of AI workers in buffaloes through plasma progesterone profile under field conditions. Indian J Anim Sci 27:706–709Google Scholar
  26. Sisco B, Pfeffer PL (2007) Expression of activin pathway genes in granulosa cells of dominant and subordinate bovine follicles. Theriogenology 68:29–37CrossRefPubMedGoogle Scholar
  27. Spearow JL, Nutson PA, Mailliard WS, Porter M, Barkley M (1999) Mapping genes that control hormone-induced ovulation rate in mice. Biol Reprod 61:857–872CrossRefPubMedGoogle Scholar
  28. Stolk L, Perry JR, Chasman DI, He C, Mangino M, Sulem P, Barbalic M, Broer L, Byrne EM, Ernst F, Esko T, Franceschini N, Gudbjartsson DF, Hottenga JJ, Kraft P, McArdle PF, Porcu E, Shin SY, Smith AV, van Wingerden S, Zhai G, Zhuang WV, Albrecht E, Alizadeh BZ, Aspelund T, Bandinelli S, Lauc LB, Beckmann JS, Boban M, Boerwinkle E, Broekmans FJ, Burri A, Campbell H, Chanock SJ, Chen C, Cornelis MC, Corre T, Coviello AD, d’Adamo P, Davies G, de Faire U, de Geus EJ, Deary IJ, Dedoussis GV, Deloukas P, Ebrahim S, Eiriksdottir G, Emilsson V, Eriksson JG, Fauser BC, Ferreli L, Ferrucci L, Fischer K, Folsom AR, Garcia ME, Gasparini P, Gieger C, Glazer N, Grobbee DE, Hall P, Haller T, Hankinson SE, Hass M, Hayward C, Heath AC, Hofman A, Ingelsson E, Janssens AC, Johnson AD, Karasik D, Kardia SL, Keyzer J, Kiel DP, Kolcic I, Kutalik Z, Lahti J, Lai S, Laisk T, Laven JS, Lawlor DA, Liu J, Lopez LM, Louwers YV, Magnusson PK, Marongiu M, Martin NG, Klaric IM, Masciullo C, McKnight B, Medland SE, Melzer D, Mooser V, Navarro P, Newman AB, Nyholt DR, Onland-Moret NC, Palotie A, Paré G, Parker AN, Pedersen NL, Peeters PH, Pistis G, Plump AS, Polasek O, Pop VJ, Psaty BM, Räikkönen K, Rehnberg E, Rotter JI, Rudan I, Sala C, Salumets A, Scuteri A, Singleton A, Smith JA, Snieder H, Soranzo N, Stacey SN, Starr JM, Stathopoulou MG, Stirrups K, Stolk RP, Styrkarsdottir U, Sun YV, Tenesa A, Thorand B, Toniolo D, Tryggvadottir L, Tsui K, Ulivi S, van Dam RM, van der Schouw YT, van Gils CH, van Nierop P, Vink JM, Visscher PM, Voorhuis M, Waeber G, Wallaschofski H, Wichmann HE, Widen E, Wijnands-van Gent CJ, Willemsen G, Wilson JF, Wolffenbuttel BH, Wright AF, Yerges-Armstrong LM, Zemunik T, Zgaga L, Zillikens MC, Zygmunt M; LifeLines Cohort Study, Arnold AM, Boomsma DI, Buring JE, Crisponi L, Demerath EW, Gudnason V, Harris TB, Hu FB, Hunter DJ, Launer LJ, Metspalu A, Montgomery GW, Oostra BA, Ridker PM, Sanna S, Schlessinger D, Spector TD, Stefansson K, Streeten EA, Thorsteinsdottir U, Uda M, Uitterlinden AG, van Duijn CM, Völzke H, Murray A, Murabito JM, Visser JA, Lunetta KL (2012) Meta-analyses identify 13 novel loci associated with age at menopause and highlights DNA repair and immune pathways. Nat Genet 44:260–268Google Scholar
  29. Vlachos IS, Zagganas K, Paraskevopoulou MD, Georgakilas G, Karagkouni D, Vergoulis T, Dalamagas T, Hatzigeorgiou AG (2015) DIANA-miRPath v3. 0: deciphering microRNA function with experimental support. Nucleic Acids Res 43(W1):W460–W466CrossRefPubMedPubMedCentralGoogle Scholar
  30. Weber JA, Baxter DH, Zhang S, Huang DY, Lee MJ, Galas DJ, Wang K (2010) The microRNA spectrum in 12 body fluids. Clin Chem 56:1733–1741CrossRefPubMedPubMedCentralGoogle Scholar
  31. Xie Z, Chen G, Zhang X, Li D, Huang J, Yang C, Zhang P, Qin Y, Duan Y, Gong B, Li Z (2013) Salivary microRNAs as promising biomarkers for detection of esophageal cancer. PLoS One 8:e57502CrossRefPubMedPubMedCentralGoogle Scholar
  32. Yang MY, Rajamahendran R (2000) Involvement of apoptosis in the atresia of non-ovulatory dominant follicle during the bovine estrous cycle. Biol Reprod 63:1313–1321CrossRefPubMedGoogle Scholar
  33. Yu X, Zhang X, Dhakal IB, Beggs M, Kadlubar S, Luo D (2012) Induction of cell proliferation and survival genes by estradiol-repressed microRNAs in breast cancer cells. BMC Cancer 12:29CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Prashant Singh
    • 1
  • Naresh Golla
    • 1
  • Pankaj Singh
    • 1
  • Vijay Simha Baddela
    • 1
  • Subhash Chand
    • 2
  • Rubina Kumari Baithalu
    • 3
  • Dheer Singh
    • 1
  • Suneel Kumar Onteru
    • 1
  1. 1.Molecular Endocrinology, Functional Genomics and Systems Biology Lab, Animal Biochemistry DivisionICAR-National Dairy Research InstituteKarnalIndia
  2. 2.AI Lab, Artificial Breeding Research CenterICAR-National Dairy Research InstituteKarnalIndia
  3. 3.Livestock Production and ManagementICAR-National Dairy Research InstituteKarnalIndia

Personalised recommendations