Skip to main content
Log in

Verification and fine mapping of qGW1.05, a major QTL for grain weight in maize (Zea mays L.)

  • Original Article
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Grain weight, one of the important factors to determine corn yield, is a typical quantitative inheritance trait. However, the molecular genetic basis of grain weight still remains limited. In our previous researches, a major QTL associated with grain weight, qGW1.05, has been identified between SSR markers umc1601 and umc1754 at bin locus 1.05–1.06 in maize. Here, its genetic and environmental stabiliteis were verified using a BC3F2 population to identify the effect of qGW1.05 on grain weight. Further, qGW1.05-NILs were obtained by MAS successfully. Via a large BC6F2 segregation population, together with polymorphic microsatellite markers developed between the parents to screen the genotype of the recombinant plants, qGW1.05 was positioned to a 1.11 Mb genome interval. Furthermore, the progenies of 15 recombinants were tested to confirm the effect of qGW1.05 on grain weight. Combining collinearity among cereal crops and genome annotation, the several candidate genes taking part in grain development were identified in the qGW1.05 region. In this study, qGW1.05 was limited to a 1.11 Mb region on chromosome 1, which established the foundation for understanding the molecular basis underlying kernel development and improving grain weight through MAS using the tightly flanking molecular markers in maize.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

100 GW:

100-Grain weight

QTL:

Quantitative trait locus

NIL:

Near-isogenic line

RILs:

Recombinant inbred lines

CSSL:

Chromosome segment substitution line

MAS:

Molecular marker-assisted selection

LOD:

Logarithm of odds

SSR:

Simple sequence repeat

SNP:

Single nucleotide polymorphism

DAP:

Days after pollination

BAC:

Bacterial artificial chromosome

BLAST:

Basic local alignment search tool

qRT-PCR:

Quantitative real-time polymerase chain reaction

References

  • Albert S, Després B, Guilleminot J, Bechtold N, Pelletier G, Delseny M, Devic M (1999) The EMB506 gene encodes a novel ankyrin repeat containing protein that is essential for the normal development of Arabidopsis embryos. Plant J 17:169–179

    Article  CAS  Google Scholar 

  • Asano T, Kunieda N, Omura Y, Ibe H, Kawasaki T, Takano M, Sato M, Furuhashi H, Mujin T, Takaiwa F, Wu Cy CY, Tada Y, Satozawa T, Sakamoto M, Shimada H (2002) Rice SPK, a calmodulin-like domain protein kinase, is required for storage product accumulation during seed development: phosphorylation of sucrose synthase is a possible factor. Plant Cell 14:619–628

    Article  CAS  Google Scholar 

  • Austin DF, Lee M (1998) Detection of quantitative trait loci for grain yield and yield components in maize across generations in stress and nonstress environments. Crop Sci 38:1296–1308

    Article  CAS  Google Scholar 

  • Bednarek J, Boulaflous A, Girousse C, Ravel C, Tassy C, Barret P, Bouzidi MF, Mouzeyar S (2012) Down-regulation of the TaGW2 gene by RNA interference results in decreased grain size and weight in wheat. J Exp Bot 63:5945–5955

    Article  CAS  Google Scholar 

  • Berke TG, Rocheford TR (1995) Quantitative trait loci for flowering, plant and ear height, and kernel traits in maize. Crop Sci 35:1542–1549

    Article  Google Scholar 

  • Chapman SC, Edmeades GO (1999) Selection improves drought tolerance in tropical maize populations: II. Direct and correlated responses among secondary traits. Crop Sci 39:1315–1324

    Article  Google Scholar 

  • Chen HQ (2009) Fine mapping and NILs development of three QTLs for 100-grain weight and popping fold in maize. MS D Thesis. Henan Agricultural University, Zhengzhou

  • Chen CX, Lu MY, Shang AL, Wang YM, Xi ZY (2013) Analysis of QTL for 100-kernel weight using chromosome single segment substitution lines in maize. Acta Agron Sin 39:1562–1568

    Article  CAS  Google Scholar 

  • Chen J, Zhang L, Liu S, Li Z, Huang R, Li Y, Cheng H, Li X, Zhou B, Wu S, Chen W, Wu J, Ding J (2016) The genetic basis of natural variation in kernel size and related traits using a four-way cross population in maize. PLoS One 11:e0153428

    Article  Google Scholar 

  • Cheng WH, Taliercio EW, Chourey PS (1996) The Miniature1 seed locus of maize encodes a cell wall invertase required for normal development of endosperm and maternal cells in the pedicel. Plant Cell 8:971–983

    Article  CAS  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    CAS  PubMed  PubMed Central  Google Scholar 

  • Collard BC, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos Trans R Soc B 363:557–572

    Article  CAS  Google Scholar 

  • Doebley J, Bacigalupo A, Stec A (1994) Inheritance of kernel weight in two maize-teosinte hybrid populations: implications for crop evolution. J Hered 85:191–195

    Article  Google Scholar 

  • Eichten SR, Foerster JM, de Leon N, Kai Y, Yeh CT, Liu S, Jeddeloh JA, Schnable PS, Kaeppler SM, Springer NM (2011) B73-Mo17 near-isogenic lines demonstrate dispersed structural variation in maize. Plant Physiol 156:1679–1690

    Article  CAS  Google Scholar 

  • Fan JB, Gunderson KL, Bibikova M, Yeakley JM, Chen J, Wickham Garcia E, Lebruska LL, Laurent M, Shen R, Barker D (2006) Illumina universal bead arrays. Methods Enzymol 410:57–73

    Article  CAS  Google Scholar 

  • Frary A, Nesbitt TC, Grandillo S, Knaap E, Cong B, Liu J, Meller J, Elber R, Alpert KB, Tanksley SD (2000) fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science 289:85–88

    Article  CAS  Google Scholar 

  • Gachomo EW, Jno Baptiste L, Kefela T, Saidel WM, Kotchoni SO (2014) The Arabidopsis CURVY1 (CVY1) gene encoding a novel receptor-like protein kinase regulates cell morphogenesis, flowering time and seed production. BMC Plant Biol 14:221

    Article  Google Scholar 

  • Ganal MW, Durstewitz G, Polley A, Bérard A, Buckler ES, Charcosset A, Clarke JD, Graner EM, Hansen M, Joets J, Le Paslier MC, McMullen MD, Montalent P, Rose M, Schön CC, Sun Q, Walter H, Martin OC, Falque M (2011) A large maize (Zea mays L.) SNP genotyping array: development and germplasm genotyping, and genetic mapping to compare with the B73 reference genome. PLoS One 6:e28334

    Article  CAS  Google Scholar 

  • Guo M, Rupe MA, Dieter JA, Zou J, Spielbauer D, Duncan KE, Howard RJ, Hou Z, Simmons CR (2010) Cell Number Regulator1 affects plant and organ size in maize: implications for crop yield enhancement and heterosis. Plant Cell 22:1057–1073

    Article  CAS  Google Scholar 

  • Guo JJ, Chen ZL, Liu ZP, Wang BB, Song WB, Li W, Chen J, Dai JR, Lai JS (2011) Identification of genetic factors affecting plant density response through QTL mapping of yield component traits in maize (Zea mays L.). Euphytica 182:409–422

    Article  Google Scholar 

  • Gygi SP, Rochon Y, Franza BR, Aebersold R (1999) Correlation between protein and mRNA abundance in yeast. Mol Cell Biol 19:1720–1730

    Article  CAS  Google Scholar 

  • Hao XM, Li XW, Yang XH, Li JS (2014) Transferring a major QTL for oil content using marker-assisted backcrossing into an elite hybrid to increase the oil content in maize. Mol Breed 34:739–748

    Article  CAS  Google Scholar 

  • Jiang HY, Chen SJ, Gao LF, Xing JM, Song TM, Dai JR (2005) Analysis on heterotic groups and heterotic patterns of high oil corn inbred lines. Acta Agron Sin 31:361–367

    Google Scholar 

  • Jiang PS, Zhang HX, Lü XL, Hao ZF, Li B, Li MS, Wang HW, Ci XK, Zhang SH, Li XH, Shi ZS, Weng JF (2013) Analysis of meta-QTL and candidate genes related to yield components in maize. Acta Agron Sin 39:969–978

    Article  CAS  Google Scholar 

  • Jing Y, Lin R (2015) The VQ motif-containing protein family of plant-specific transcriptional regulators. Plant Physiol 169:371–378

    Article  CAS  Google Scholar 

  • Kiniry JR, Wood CA, Spanel DA, Bockholt AJ (1990) Seed weight response to decreased seed number in maize. Agron J 54:98–102

    Article  Google Scholar 

  • Koçar G, Civaş N (2013) An overview of biofuels from energy crops: current status and future prospects. Renew Sust Energ Rev 28:900–916

    Article  Google Scholar 

  • Lalitha S (2000) Primer premier 5. Biotech Softw Internet Rep 1:270–272

    Article  Google Scholar 

  • Li N, Li Y (2015) Maternal control of seed size in plants. J Exp Bot 66:1087–1097

    Article  CAS  Google Scholar 

  • Li Q, Wan JM (2005) SSRHunter: development of a local searching software for SSR sites. Hereditas 27:808–810

    PubMed  Google Scholar 

  • Li YL, Niu SZ, Dong YB, Cui DQ, Wang YZ, Liu YY, Wei MG (2007) Identification of trait-improving quantitative trait loci for grain yield components from a dent corn inbred line in an advanced backcross BC2F2 population and comparison with its F2:3 population in popcorn. Theor Appl Genet 115:129–140

    Article  CAS  Google Scholar 

  • Li YL, Li XH, Li JZ, Fu JF, Wang YZ, Wei MG (2009) Dent corn genetic background influences QTL detection for grain yield and yield components in high-oil maize. Euphytica 169:273–284

    Article  Google Scholar 

  • Li JZ, Zhang ZW, Li YL, Wang QL, Zhou YG (2011) QTL consistency and meta-analysis for grain yield components in three generations in maize. Theor Appl Genet 122:771–782

    Article  CAS  Google Scholar 

  • Li XJ, Zhang YF, Hou M, Sun F, Shen Y, Xiu ZH, Wang X, Chen ZL, Sun SS, Small I, Tan BC (2014) Small kernel 1 encodes a pentatricopeptide repeat protein required for mitochondrial nad7 transcript editing and seed development in maize (Zea mays) and rice (Oryza sativa). Plant J 79:797–809

    Article  CAS  Google Scholar 

  • Lid SE, Gruis D, Jung R, Lorentzen JA, Ananiev E, Chamberlin M, Niu X, Meeley R, Nichols S, Olsen OA (2002) The defective kernel 1 (dek1) gene required for aleurone cell development in the endosperm of maize grains encodes a membrane protein of the calpain gene superfamily. Proc Natl Acad Sci USA 99:5460–5465

    Article  CAS  Google Scholar 

  • Lincoln S, Daly M, Lander ES (1992) Constructing genetic maps with Mapmaker/Exp 3.0. In: Whitehead Institute Technical Report. Whitehead Institute, Cambridge

  • Liu Y, Wang L, Sun C, Zhang Z, Zheng Y, Qiu F (2014) Genetic analysis and major QTL detection for maize kernel size and weight in multi-environments. Theor Appl Genet 127:1019–1037

    Article  CAS  Google Scholar 

  • Liu L, Du Y, Shen X, Li M, Sun W, Huang J, Liu Z, Tao Y, Zheng Y, Yan J, Zhang Z (2015) KRN4 controls quantitative variation in maize kernel row number. PLoS Genet 11:e1005670

    Article  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using realtime quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  CAS  Google Scholar 

  • Luo M, Dennis ES, Berger F, Peacock WJ, Chaudhury A (2005) MINISEED3 (MINI3), a WRKY family gene, and HAIKU2 (IKU2), a leucine-rich repeat (LRR) KINASE gene, are regulators of seed size in Arabidopsis. Proc Natl Acad Sci USA 102:17531–17536

    Article  CAS  Google Scholar 

  • Ma XQ, Tang JH, Teng WT, Yan JB, Meng YJ, Li JS (2007) Epistatic interaction is an important genetic basis of grain yield and its components in maize. Mol Breed 20:41–51

    Article  Google Scholar 

  • Maitz M, Santandrea G, Zhang Z, Lal S, Hannah LC, Salamini F, Thompson RD (2000) rgf1, mutation reducing grain filling in maize through effects on basal endosperm and pedicel development. Plant J 23:29–42

    Article  CAS  Google Scholar 

  • Manimaran P, Mangrauthia SK, Sundaram RM, Balachandran SM (2015) Constitutive expression and silencing of a novel seed specific calcium dependent protein kinase gene in rice reveals its role in grain filling. J Plant Physiol 174:41–48

    Article  CAS  Google Scholar 

  • Messmer R, Fracheboud Y, Bänziger M, Vargas M, Stamp P, Ribaut JM (2009) Drought stress and tropical maize: QTL-by-environment interactions and stability of QTLs across environments for yield components and secondary traits. Theor Appl Genet 119:913–930

    Article  Google Scholar 

  • Mialoundama AS, Jadid N, Brunel J, Di Pascoli T, Heintz D, Erhardt M, Mutterer J, Bergdoll M, Ayoub D, Van Dorsselaer A, Rahier A, Nkeng P, Geoffroy P, Miesch M, Camara B, Bouvier F (2013) Arabidopsis ERG28 tethers the sterol C4-demethylation complex to prevent accumulation of abiosynthetic intermediate that interferes with polar auxin transport. Plant Cell 25:4879–4893

    Article  CAS  Google Scholar 

  • Parcy F, Valon C, Raynal M, Gaubier-Comella P, Delseny M, Giraudat J (1994) Regulation of gene expression programs during Arabidopsis seed development: roles of the ABI3 locus and of endogenous abscisic acid. Plant Cell 6:1567–1582

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prado SA, Gambín BL, Novoa AD, Foster D (2013) Correlations between parental inbred lines and derived hybrid performance for grain filling traits in maize. Crop Sci 53:1636–1645

    Article  Google Scholar 

  • Prado SA, López CG, Senior ML, Borrás L (2014) The genetic architecture of maize (Zea mays L.) kernel weight determination. G3 (Bethesda) 4:1611–1621

    Article  Google Scholar 

  • Qi W, Yang Y, Feng X, Zhang M, Song R (2017) Mitochondrial function and maize kernel development requires Dek2, pentatricopeptide repeat protein involved in nad1 mRNA splicing. Genetics 205:239–249

    Article  CAS  Google Scholar 

  • Saghaimaroof MA, Soliman KM, Jorgensen RA, Allard RW (1984) Ribosomal DNA spacer length polymorphisms in barley: mendelian inheritance, chromosomal location, and population, and population dynamics. Proc Natl Acad Sci USA 81:8014–8018

    Article  CAS  Google Scholar 

  • Sekhon RS, Lin H, Childs KL, Hansey CN, Buell CR, de Leon N, Kaeppler SM (2011) Genome-wide atlas of transcription during maize development. Plant J 66:553–563

    Article  CAS  Google Scholar 

  • Senior ML, Heun M (1993) Mapping maize microsatellites and polymerase chain reaction confirmation of the targeted repeats using a CT primer. Genome 36:884–889

    Article  CAS  Google Scholar 

  • Shahollari B, Vadassery J, Varma A, Oelmüller R (2007) A leucine-rich repeat protein is required for growth promotion and enhanced seed production mediated by the endophytic fungus Piriformospora indica in Arabidopsis thaliana. Plant J 50:1–13

    Article  CAS  Google Scholar 

  • Shomura A, Izawa T, Ebana K, Ebitani T, Kanegae H, Konishi S, Yano M (2008) Deletion in a gene associated with grain size increased yields during rice domestication. Nat Genet 40:1023–1028

    Article  CAS  Google Scholar 

  • Soderlund C, Nelson W, Shoemaker A, Paterson A (2006) SyMAP: a system for discovering and viewing syntenic regions of FPC maps. Genome Res 16:1159–1168

    Article  CAS  Google Scholar 

  • Soderlund C, Bomhoff M, Nelson WM (2011) SyMAP v3.4: a turnkey synteny system with application to plant genomes. Nucleic Acids Res 39:e68

    Article  CAS  Google Scholar 

  • Song XJ, Huang W, Shi M, Zhu MZ, Lin HX (2007) A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet 39:623–630

    Article  CAS  Google Scholar 

  • Stuber CW, Edwards MD, Wendel JF (1987) Molecular marker facilitated investigations of quantitative trait loci in maize: II. Factors influencing yield and its component traits. Crop Sci 27:639–648

    Article  Google Scholar 

  • Szalma SJ, Hostert BM, Ledeaux JR, Stuber CW, Holland JB (2007) QTL mapping with near-isogenic lines in maize. Theor Appl Genet 114:1211–1228

    Article  CAS  Google Scholar 

  • Walley JW, Sartor RC, Shen Z, Schmitz RJ, Wu KJ, Urich MA, Nery JR, Smith LG, Schnable JC, Ecker JR, Briggs SP (2016) Integration of omic networks in a developmental atlas of maize. Science 353:814–818

    Article  CAS  Google Scholar 

  • Wang BT, Wu JY, Ding JQ, Xi ZY (2009) Map integration of QTLs for grain yield and its related traits in maize. Acta Agron Sin 35:1836–1843

    Article  CAS  Google Scholar 

  • Wang A, Garcia D, Zhang H, Feng K, Chaudhury A, Berger F, Peacock WJ, Dennis ES, Luo M (2010) The VQ motif protein IKU1 regulates endosperm growth and seed size in Arabidopsis. Plant J 63:670–679

    Article  CAS  Google Scholar 

  • Wang J, Ma XM, Kojima M, Sakakibara H, Hou BK (2011) N-glucosyltransferase UGT76C2 is involved in cytokinin homeostasis and cytokinin response in Arabidopsis thaliana. Plant Cell Physiol 52:2200–2213

    Article  CAS  Google Scholar 

  • Wang S, Basten CJ, Zeng ZB (2012) Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh. http://statgen.ncsu.edu/qtlcart/WQTLCart.htm

  • Wang S, Cao L, Wang H (2016) Arabidopsis ubiquitin-conjugating enzyme UBC22 is required for female gametophyte development and likely involved in Lys11-linked ubiquitination. J Exp Bot 67:3277–3288

    Article  CAS  Google Scholar 

  • Weng J, Gu S, Wan X, Gao H, Guo T, Su N, Lei C, Zhang X, Cheng Z, Guo X, Wang J, Jiang L, Zhai H, Wan J (2008) Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight. Cell Res 18:1199–1209

    Article  CAS  Google Scholar 

  • Xia T, Li N, Dumenil J, Li J, Kamenski A, Bevan MW, Gao F, Li Y (2013) The ubiquitin receptor DA1 interacts with the E3 ubiquitin ligase DA2 to regulate seed and organ size in Arabidopsis. Plant Cell 25:3347–3359

    Article  CAS  Google Scholar 

  • Xu Y, Crouch JH (2008) Marker-assisted selection in plant breeding: from publications to practice. Crop Sci 48:391–407

    Article  Google Scholar 

  • Yan JB, Tang H, Huang YQ, Zheng YL, Li JS (2006) Quantitative trait loci mapping and epistatic analysis for grain yield and yield components using molecular markers with an elite maize hybrid. Euphytica 149:121–131

    Article  CAS  Google Scholar 

  • Yang GH, Li YL, Wang QL, Zhou YG, Zhou Q, Shen BT, Zhang FF, Liang XJ (2012a) Detection and integration of quantitative trait loci for grain yield components and oil content in two connected recombinant inbred line populations of high-oil maize. Mol Breed 29:313–333

    Article  CAS  Google Scholar 

  • Yang Q, Zhang D, Xu M (2012b) A sequential quantitative trait locus fine-mapping strategy using recombinant-derived progeny. J Integr Plant Biol 54:228–237

    Article  Google Scholar 

  • Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang G, Wang X, Wang B, Tian Y, Li M, Nie Y, Peng Q, Wang Z (2013) Fine mapping a major QTL for kernel number per row under different phosphorus regimes in maize (Zea mays L.). Theor Appl Genet 126:1545–1553

    Article  CAS  Google Scholar 

  • Zhang Z, Wu X, Shi C, Wang R, Li S, Wang Z, Liu Z, Xue Y, Tang G, Tang J (2016) Genetic dissection of the maize kernel development process via conditional QTL mapping for three developing kernel-related traits in an immortalized F2 population. Mol Genet Genomics 291:437–454

    Article  CAS  Google Scholar 

  • Zhou BY, Yue Y, Sun XF, Wang XB, Wang ZM, Ma W, Zhao M (2016) Maize grain yield and dry matter production responses to variations in weather conditions. Agron J 108:196–204

    Article  Google Scholar 

  • Zuo J, Li J (2014) Molecular genetic dissection of quantitative trait loci regulating rice grain size. Annu Rev Genet 48:99–118

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by the National Natural Science Foundation of China (31101157), Research on the foundation and advanced technology of the science and Technology Department of Henan (162300410179) and the Key Program of Higher Education of Henan (15A210003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuling Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with animals performed by any of the authors.

Additional information

Communicated by S. Hohmann.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 206 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Q., Dong, Y., Shi, Q. et al. Verification and fine mapping of qGW1.05, a major QTL for grain weight in maize (Zea mays L.). Mol Genet Genomics 292, 871–881 (2017). https://doi.org/10.1007/s00438-017-1318-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-017-1318-0

Keywords

Navigation