Abstract
Coffea arabica (the Arabica coffee) is an allotetraploid species originating from a recent hybridization between two diploid species: C. canephora and C. eugenioides. Transposable elements can drive structural and functional variation during the process of hybridization and allopolyploid formation in plants. To learn more about the evolution of the C. arabica genome, we characterized and studied a new Copia LTR-Retrotransposon (LTR-RT) family in diploid and allotetraploid Coffea genomes called Divo. It is a complete and relatively compact LTR-RT element (~5 kb), carrying typical Gag and Pol Copia type domains. Reverse Trancriptase (RT) domain-based phylogeny demonstrated that Divo is a new and well-supported family in the Bianca lineage, but strictly restricted to dicotyledonous species. In C. canephora, Divo is expressed and showed a genomic distribution along gene rich and gene poor regions. The copy number, the molecular estimation of insertion time and the analysis at orthologous locations of insertions in diploid and allotetraploid coffee genomes suggest that Divo underwent a different and recent transposition activity in C. arabica and C. canephora when compared to C. eugenioides. The analysis of this novel LTR-RT family represents an important step toward uncovering the genome structure and evolution of C. arabica allotetraploid genome.
This is a preview of subscription content,
to check access.



Similar content being viewed by others
References
Ainouche ML, Fortune PM, Salmon A, Parisod C, Grandbastien MA, Fukunaga K, Ricou M, Misset MT (2009) Hybridization, polyploidy and invasion: lessons from Spartina (Poaceae). Biol Invasions 11:1159–1173
Allaire JJ (2012) RStudio: Integrated development environment for R. J Wildl Manage 75:1
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic Local Alignment Search Tool. J Mol Biol 215:403–410
Argout X, Salse J, Aury J-M, Guiltinan MJ, Droc G, Gouzy J, Allegre M, Chaparro C, Legavre T, Maximova SN, Abrouk M, Murat F, Fouet O, Poulain J, Ruiz M, Roguet Y, Rodier-Gout M, Barbosa-Neto JF, Sabot F, Kudrna D, Ammiraju JSS, Schuster SC, Carlson JE, Sallet E, Schiex T, Dievart A, Kramer M, Gelley L, Shi Z, Bérard A, Viot C, Boccara M, Resterucci AM, Guignon V, Sabau X, Axtell MJ, Ma Z, Zhang Y, Brown S, Bourge M, Golser W, Song X, Clement D, Rivallan R, Tahi M, Akaza JM, Pitollat B, Gramacho K, D’Hont A, Brunel D, Infante D, Kebe I, Costet P, Wing R, McCombie WR, Guiderdoni E, Quetier F, Panaud O, Wincker P, Bocs S, Lanaud C (2011) The genome of Theobroma cacao. Nat Genet 43:101–109
Audic S, Claverie J (1997) The Significance of Digital Gene Expression Profiles. Genome Res 7:986–995.
Bao W, Kojima KK, Kohany O (2015) Repbase Update, a database of repetitive elements in eukaryotic genomes. Mob DNA 6:1–6. doi:10.1186/s13100-015-0041-9
Bennetzen JL, Kellogg E (1997) Do Plants Have a One-Way Ticket to Genomic Obesity? Plant Cell 9:1509–1514
Bouharmont J (1959) Recherches sur les affinités chromosomiques dans le genre Coffea. I.N.É.A.C., Montpellier
Brenchley R, Spannagl M, Pfeifer M, Barker GLA, D’Amore R, Allen AM, McKenzie N, Kramer M, Kerhornou Y, Bolser D, Kay S, Waite D, Trick M, Bancroft I, Gu Y, Huo N, Luo MC, Sehgal S, Kianian S, Gill B, Anderson O, Kersey P, Dvorak J, McCombie R, Hall A, Mayer KFX, Edwards KJ, Bevan M, Hall N (2012) Analysis of the bread wheat genome using whole genome shotgun sequencing. Nature 491:705–710
Cai J, Liu X, Vanneste K, Proost S, Tsai WC, Liu KW, Chen LJ, He Q, Xu Q, Bian C, Zheng Z, Sun F, Liu W, Hsiao YY, Pan ZJ, Hsu CC, Yang YP, Hsu YC, Chuang YC, Dievart A, Dufayard JF, Xu X, Wang JY, Wang J, Xiao XJ, Zhao XM, Du R, Zhang GQ, Wang M, Su YY, Xie GC, Liu GH, Li LQ, Huang LQ, Luo YB, Chen HH, Van de Peer Y, Liu ZJ (2015) The genome sequence of the orchid Phalaenopsis equestris. Nat Am 47:65–76.
Carvalho A (1952) Taxonomia de Coffea arabica L. VI - Caracteres morfologicos dos haploides. Bragantia 12:201–212.
Chaparro C, Guyot R, Zuccolo A, Piégu B, Panaud O (2007) RetrOryza: A database of the rice LTR-retrotransposons. Nucleic Acids Res 35:66–70
Davis AP, Tosh J, Ruch N, Fay MF (2011) Growing coffee: Psilanthus (Rubiaceae) subsumed on the basis of molecular and morphological data; implications for the size, morphology, distribution and evolutionary history of Coffea. Bot J Linn Soc 167:357–377
Denoeud F, Carretero-Paulet L, Dereeper A, Droc G, Guyot R, Pietrella M, Zheng C, Alberti A, Anthony F, Aprea G, Aury JM, Bento P, Bernard M, Bocs S, Campa C, Cenci A, Combes MC, Crouzillat D, Da Silva C, Daddiego L, De Bellis F, Dussert S, Garsmeur O, Gayraud T, Guignon V, Jahn K, Jamilloux V, Joët T, Labadie K, Lan T, Leclercq J, Lepelley M, Leroy T, Li LT, Librado P, Lopez L, Muñoz A, Noel B, Pallavicini A, Perrotta G, Poncet V, Pot D, Priyono, Rigoreau M, Rouard M, Rozas J, Tranchant-Dubreuil C, VanBuren R, Zhang Q, Andrade AC, Argout X, Bertrand B, de Kochko A, Graziosi G, Henry RJ, Jayarama, Ming R, Nagai C, Rounsley S, Sankoff D, Giuliano G, Albert VA, Wincker P, Lashermes P (2014) The coffee genome provides insight into the convergent evolution of caffeine biosynthesis. Science 345:1180–1184
Devos KM, Brown JKM, Bennetzen JL (2002) Genome size reduction through illegitimate recombination counteracts genome expansion in arabidopsis. Genome Res 12:1075–1079
Dias ES, Hatt C, Hamon S, Hamon P, Rigoreau M, Crouzillat D, Carareto CMA, de Kochko A, Guyot R (2015) Large distribution and high sequence identity of a Copia-type retrotransposon in angiosperm families. Plant Mol Biol 89:83–97
Domingues DS, Cruz GMQ, Metcalfe CJ, Nogueira FTS, Vicentini R, Alves CS, Van Sluys MA (2012) Analysis of plant LTR-retrotransposons at the fine-scale family level reveals individual molecular patterns. BMC Genomics 13:1–13. doi:10.1186/1471-2164-13-137
Du J, Tian Z, Hans CS, Laten HM, Cannon SB, Jackson SA, Shoemaker RC, Ma J (2010) Evolutionary conservation, diversity and specificity of LTR-retrotransposons in flowering plants: insights from genome-wide analysis and multi-specific comparison. Plant J 63:584–598
Eickbush TH, Jamburuthugoda VK (2007) The diversity of retrotransposons and the properties of their reverse transcriptases. Mol Cell Biol 134:221–234
Fedoroff NV (2012) Transposable elements, epigenetics, and genome evolution. Science 338:758–767
Feschotte C, Pritham EJ (2007) DNA transposons and the evolution of eukaryotic genomes. Annu Rev Genet 41:331–368
Fontana A (2010) A hypothesis on the role of transposons. Biosystems 101:187–193
Gilbert C, Peccoud J, Chateigner A, Moumen B, Cordaux R, Herniou EA (2016) Continuous influx of genetic material from host to virus populations. PLoS Genet 12:1–21
Guyot R, Darré T, Dupeyron M, de Kochko A, Hamon S, Couturon E, Crouzillat D, Rigoreau M, Rakotomalala JJ, Raharimalala NE, Akaffou SD, Hamon P (2016) Partial sequencing reveals the transposable element composition of Coffea genomes and provides evidence for distinct evolutionary stories. Mol Genet Genomics 291:1979–1990
Hamon P, Duroy PO, Dubreuil-Tranchant C, Costa PMD, Duret C, Razafinarivo NJ, Couturon E, Hamon S, e Kochko A, Poncet V, Guyot R (2011) Two novel Ty1-copia retrotransposons isolated from coffee trees can effectively reveal evolutionary relationships in the Coffea genus (Rubiaceae). Mol Genet Genomics 285:447–460
International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:793–800
Kohany O, Gentles AJ, Hankus L, Jurka J (2006) Annotation, submission and screening of repetitive elements in Repbase: RepbaseSubmitter and Censor. BMC Bioinformatics 7:474
Kolano B, Bednara E, Weiss-Schneeweiss H (2013) Isolation and characterization of reverse transcriptase fragments of LTR retrotransposons from the genome of Chenopodium quinoa (Amaranthaceae). Plant Cell Rep 32:1575–1588
Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA (2009) Circos: an information aesthetic fo comparative genomics. Genome Res 19:1639–1645
Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 72:181–204
Lashermes P, Combes MC, Robert J, Trouslot P, D’Hont A, Anthony F, Charrier A (1999) Molecular characterization and origin of the Coffea arabica L. genome. Mol Gen Genet 261:259–266
Le Grice SFJ (2003) “In the beginning”: initiation of minus strand DNA synthesis in retroviruses and LTR-containing retrotransposons. BioChemistry 42:14349–14355
Leng P, Klatte DH, Schumann G, Boeke JD, Steck TL (1998) Skipper, an LTR retrotransposon of Dictyostelium. Nucleic Acids Res 26:2008–2015
Lerat E (2010) Identifying repeats and transposable elements in sequenced genomes: how to find your way through the dense forest of programs. Heredity 104:520–533
Lin X, Faridi N, Casola C (2016) An ancient transkingdom horizontal transfer of penelopelike retroelements from arthropods to conifers. Genome Biol Evol 8:1252–1266
Llorens C, Muñoz-Pomer A, Bernad L, Botella H, Moya A (2009) Network dynamics of eukaryotic LTR retroelements beyond phylogenetic trees. Biol Direct 4:41
Llorens C, Futami R, Covelli L, Domínguez-Escribá L, Viu JM, Tamarit D, Aguilar-Rodríguez J, Vicente-Ripolles M, Fuster G, Bernet GP, Maumus F, Munoz-Pomer A, Sempere JM, Latorre, Moya A (2011) The Gypsy Database (GyDB) of mobile genetic elements: release 2.0. Nucleic Acids Res 39:D70–D74
Louarn J (1976) Hybrides interspécifiques entre Coffea canephora Pierre et C. eugenioides Moore. Café Cacao Thé 20:33–52
Ma J, Bennetzen JL (2004) Rapid recent growth and divergence of rice nuclear genomes. PNAS 101:12404–12410
Marcon HS, Domingues DS, Silva JC, Borges RJ, Matioli FF, Fonter MRM, Marino CL (2015) Transcriptionally active LTR retrotransposons in Eucalyptus genus are differentially expressed and insertionally polymorphic. BMC Plant Biol 15:198–214
McCarthy EM, McDonald JF (2003) LTR_STRUC: a novel search and identification program for LTR retrotransposons. Bioinformatics 19:362–367
Mehra M, Gangwar I, Shankar R (2015) A deluge of complex repeats: the solanum genome. PLoS One 10:1–38
Minervini CF, Viggiano L, Caizzi R, Marsano RM (2009) Identification of novel LTR retrotransposons in the genome of Aedes aegypti. Gene 440:42–49
Mirouze M, Reinders J, Bucher E, Nashimura T, Schneeberger K, Ossowki S, Cao J, Weigel D, Paszkowski J, Mathieu O (2009) Selective epigenetic control of retrotransposition in Arabidopsis. Nature 461:1–5
Nielen S, Vidigal BS, Leal-Bertioli SCM, Ratnaparkhe M, Paterson AH, Garsmeur O, D’Hont A, Guimarães PM, Bertioli DJ (2012) Matita, a new retroelement from peanut: characterization and evolutionary context in the light of the Arachis A–B genome divergence. Mol Genet Genomics 287:21–38
Ouyang S, Buell CR (2004) The TIGR Plant Repeat Databases: a collective resource for the identification of repetitive sequences in plants. Nucleic Acids Res 32:360–363
Panaud O (2016) Horizontal transfers of transposable elements in eukaryotes: The flying genes. Comptes rendus Biol. doi:10.1016/j.crvi.2016.04.013
Parisod C, Alix K, Just J, Petit M, Sarilar V, Mhiri C, Ainouche M, Chalhoub B, Grandbastien MA (2010) Impact of transposable elements on the organization and function of allopolyploid genomes. New Phytol 186:37–45
Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A, Schmutz J, Spannagl M, Tang H, Wang X, Wicker T, Bharti AK, Chapman J, Fletus FA, Otillar RP, Penning BW, Salamov AA, Wang Y, Zhang L, Carpita NC, Freeling M, Gingle AR, Hash CT, Keller B, Klein P, Kresovich S, McCann MC, Ming R, Peterson DG, Mehboob-ur-Rahman, Ware D, Westhoff P, Mayer KFX, Messing J, Rokhsar DS (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556
Peterson-Burch BD, Voytas DF (2002) Genes of the Pseudoviridae (Ty1/copia Retrotransposons). Mol Biol Evol 19:1832–1845
Piednoël M, Carrete-Vega G, Renner SS (2013) Characterization of the LTR retrotransposon repertoire of a plant clade of six diploid and one tetraploid species. Plant J 75:699–709
Romualdi C, Bortoluzzi S, D’Alessi F, Danieli GA (2003) IDEG6: a web tool for detection of differentially expressed genes in multiple tag sampling experiments. Physiol Genomics 12:159–162
Rutherford K, Parkhill J, Crook J, Horsnell T, Rice P, Rajandream MA, Barrel B (2000) Artemis: sequence visualization and annotation. Bioinformatics 16:944–945
SanMiguel P, Gaut BS, Tikhonov A, Nakajima Y, Bennetzen JL (1998) The paleontology of intergene retrotransposons of maize. Nat Genet 20:43–45
Schaack S, Gilbert C, Feschotte C (2010) Promiscuous DNA: horizontal transfer of transposable elements and why it matters for eukaryotic evolution. Trends Ecol Evol 25:537–546
Schmieder R, Edwards R (2011) Quality control and preprocessing of metagenomic datasets. Bioinformatics 27:863–864
Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternk S, Liang C, Zhang J, Fulton L, Graves TA, Minx P, Reily AD, Courtney L, Kruchowski SS, Tomlison C, Strong C, Delehaunty K, Fronick C, Courtney B, Rock SM, Belter E, Du F, Kim K, Abbott RM, Cotton M, Levy A, Marchetto P, Ochoa K, Jackson SM, Gillam B, Chen W, Yan L, Higginbotham J, Cardenas M, Waligorski J, Applebaum E, Phelps L, Falcone J, Kanchi K, Thane T, Scimone A, Thane N, Henke J, Wang T, Ruppert J, Shah N, Rotter K, Hodges J, Ingenthron E, Cordes M, Kohlberg S, Sgro J, Delgado BMead K, Chinwalla A, Leonard S, Crouse K, Collura K, Kudrna D, Currie J, He R, Angelova A, Rajasekar S, Mueller T, Lomeli R, Scara G, Ko A, Delaney K, Wissotski M, Lopez G, Campos D, Braidotti M, Ashley E, Golser W, Kim H, Lee S, Lin J, Dujmic Z, Kim W, Talag J, Zuccolo A, Fan C, Sebastian A, Kramer M, Spiegel L, Nascimento L, Zutavern T, Miller B, Ambroise C, Muller S, Spooner W, Narechania A, Ren L, Wei S, Kumari S, Faga B, Levy MJ, McMahan L, Van Buren P, Vaughn MW, Ying K, Yeh CT, Emrich SJ, Jia Y, Kalyanaraman A, Hsia AP, Barbazuk WB, Baucom RS, Brutnell TP, Carpita NC, Chaparro C, Chia JM, Deragon JM, Estill JC, Fu Y, Jeddeloh JA, Han Y, Lee H, Li P, Lish DR, Liu S, Liu Z, Nagel DH, McCann MC, SanMiguel P, Myers AM, Nettleton D, Nguyen J, Penning BW, Ponnala L, Schneider KL, Schwartz DC, Sharma A, Soderlund C, Springer NM, Sun Q, Wang H, Waterman M, Westerman R, Wolfgruber TK, Yang L, Yu Y, Zhang L, Zhou S, Zhu Q, Bennetzen JL, Dawe RK, Jiang J, Jiang N, Presting GG, Wessler SR, Aluru S, Martienssen RA, Clifton SW, McCombie WR, Wing RA, Wilson RK (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1116
Sonnhammer ELL, Durbin R (1996) A dot-matrix program with dynamic threshold control suited for genomic DNA and protein sequence analysis. Gene 167:1–10
The Arabica Coffee Genome Consortium (2014) Towards a Better Understanding of the Coffea Arabica Genome Structure. In: Association for Science and Information on Coffee (ed) International Conference on Coffee Science. Cogito, Armenia, pp 42–45
The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815
The French–Italian Public Consortium for Grapevine Genome Characterization (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature. doi:10.1038/nature6148
Vitte C, Bennetzen JL (2006) Analysis of retrotransposon structural diversity uncovers properties and propensities in angiosperm genome evolution. Proc Nat Acad Sci USA 103:17638–17643.
Wang H, Liu J-S (2008) LTR retrotransposon landscape in Medicago truncatula: more rapid removal than in rice. BMC Genomics 9:382–395
Wicker T, Keller B (2007) Genome-wide comparative analysis of copia retrotransposons in Triticeae, rice, and Arabidopsis reveals conserved ancient evolutionary lineages and distinct dynamics of individual copia families. Genome Res 17:1072–1081
Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell A, Leroy P, Morgante M, Panaud O, Paux E, SanMiguel P, Schulman AH (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8:973–982
Xu Z, Wang H (2007) LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res 35:W265–W268
Yin H, Du J, Wu J, Wei S, Xu Y, Tao S, Wu J, Zhang S (2015) Genome-wide annotation and comparative analysis of long terminal repeat retrotransposons between pear species of P. bretschneideri and P. communis. Sci Rep 5:1–15.
Yu Q, Guyot R, de Kochko A, Byers A, Navajas-Pérez R, Langston BJ, Dubreuil-Tranchant C, Paterson AH, Poncet V, Nagai C, Ming R (2011) Micro-collinearity and genome evolution in the vicinity of an ethylene receptor gene of cultivated diploid and allotetraploid coffee species (Coffea). Plant J 67:305–317
Funding Information
R.G. was supported by a Special Visiting Scientist grant from the Ciência sem Fronteiras program under the reference ID 84/2013 (Cnpq/CAPES).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Ethical approval
This article does not contain any studies with human participants or animals performed by any of the authors.
Additional information
Communicated by S. Hohmann.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Dupeyron, M., de Souza, R.F., Hamon, P. et al. Distribution of Divo in Coffea genomes, a poorly described family of angiosperm LTR-Retrotransposons. Mol Genet Genomics 292, 741–754 (2017). https://doi.org/10.1007/s00438-017-1308-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00438-017-1308-2