Skip to main content
Log in

A practical guide to studying G-quadruplex structures using single-molecule FRET

  • Review
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

In this article, we summarize the knowledge and best practices learned from bulk and single-molecule measurements to address some of the frequently experienced difficulties in single-molecule Förster resonance energy transfer (smFRET) measurements on G-quadruplex (GQ) structures. The number of studies that use smFRET to investigate the structure, function, dynamics, and interactions of GQ structures has grown significantly in the last few years, with new applications already in sight. However, a number of challenges need to be overcome before reliable and reproducible smFRET data can be obtained in measurements that include GQ. The annealing and storage conditions, the location of fluorophores on the DNA construct, and the ionic conditions of the experiment are some of the factors that are of critical importance for the outcome of measurements, and many of these manifest themselves in unique ways in smFRET assays. By reviewing these aspects and providing a summary of best practices, we aim to provide a practical guide that will help in successfully designing and performing smFRET studies on GQ structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ageno M, Dore E, Frontali C (1969) The alkaline denaturation of DNA. Biophys J 9:1281–1311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ambrus A, Chen D, Dai J, Bialis T, Jones RA, Yang D (2006) Human telomeric sequence forms a hybrid-type intramolecular G-quadruplex structure with mixed parallel/antiparallel strands in potassium solution. Nucleic Acids Res 34:2723–2735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balasubramanian S, Hurley LH, Neidle S (2011) Targeting G-quadruplexes in gene promoters: a novel anticancer strategy? Nat Rev Drug Discov 10:261–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bang I (1910) Untersuchungen über die Guanylsäure. Biochem Ztschr 26:293–311

    CAS  Google Scholar 

  • Biffi G, Tannahill D, McCafferty J, Balasubramanian S (2013) Quantitative visualization of DNA G-quadruplex structures in human cells. Nat Chem 5:182–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blackburn EH (1991) Structure and function of telomeres. Nature 350:569–573

    Article  CAS  PubMed  Google Scholar 

  • Blackburn EH, Greider CW, Szostak JW (2006) Telomeres and telomerase: the path from maize, Tetrahymena and yeast to human cancer and aging. Nat Med 12:1133–1138

    Article  CAS  PubMed  Google Scholar 

  • Budhathoki JB, Ray S, Urban V, Janscak P, Yodh JG, Balci H (2014) RecQ-core of BLM unfolds telomeric G-quadruplex in the absence of ATP. Nucleic Acids Res 42:11528–11545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Budhathoki JB, Stafford EJ, Yodh JG, Balci H (2015) ATP-dependent G-quadruplex unfolding by Bloom helicase exhibits low processivity. Nucleic Acids Res 43:5961–5970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Budhathoki Jagat B, Maleki P, Roy William A, Janscak P, Yodh Jaya G, Balci H (2016) A comparative study of G-quadruplex unfolding and DNA reeling activities of human RECQ5 helicase. Biophys J 110:2585–2596

    Article  CAS  PubMed  Google Scholar 

  • Buscaglia R, Miller MC, Dean WL, Gray RD, Lane AN, Trent JO, Chaires JB (2013) Polyethylene glycol binding alters human telomere G-quadruplex structure by conformational selection. Nucleic Acids Res 41:7934–7946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaires JB (2010) Human telomeric G-quadruplex: thermodynamic and kinetic studies of telomeric quadruplex stability. FEBS J 277:1098–1106

    Article  CAS  PubMed  Google Scholar 

  • Chambers VS, Marsico G, Boutell JM, Di Antonio M, Smith GP, Balasubramanian S (2015) High-throughput sequencing of DNA G-quadruplex structures in the human genome. Nat Biotechnol 33:877–881

    Article  PubMed  Google Scholar 

  • Chandradoss S D, Haagsma A C, Lee Y K, Hwang J H, Nam J M, Joo C (2014) Surface passivation for single-molecule protein studies. J Vis Exp. doi:10.3791/50549

    PubMed  PubMed Central  Google Scholar 

  • Chatterjee S, Zagelbaum J, Savitsky P, Sturzenegger A, Huttner D, Janscak P, Hickson ID, Gileadi O, Rothenberg E (2014) Mechanistic insight into the interaction of BLM helicase with intra-strand G-quadruplex structures. Nat Commun 5:5556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cisse I, Okumus B, Joo C, Ha T (2007) Fueling protein DNA interactions inside porous nanocontainers. Proc Natl Acad Sci USA 104:12646–12650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deniz AA, Laurence TA, Dahan M, Chemla DS, Schultz PG, Weiss S (2001) Ratiometric single-molecule studies of freely diffusing biomolecules. Annu Rev Phys Chem 52:233–253

    Article  CAS  PubMed  Google Scholar 

  • Du Z, Zhao Y, Li N (2008) Genome-wide analysis reveals regulatory role of G4 DNA in gene transcription. Genome Res 18:233–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fletcher TM, Sun D, Salazar M, Hurley LH (1998) Effect of DNA secondary structure on human telomerase activity. BioChemistry 37:5536–5541

    Article  CAS  PubMed  Google Scholar 

  • Gellert M, Lipsett MN, Davies DR (1962) Helix formation by guanylic acid. Proc Natl Acad Sci USA 48:2013–2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guedin A, Gros J, Alberti P, Mergny JL (2010) How long is too long? Effects of loop size on G-quadruplex stability. Nucleic Acids Res 38:7858–7868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ha T, Enderle T, Ogletree DF, Chemla DS, Selvin PR, Weiss S (1996) Probing the interaction between two single molecules: fluorescence resonance energy transfer between a single donor and a single acceptor. Proc Natl Acad Sci USA 93:6264–6268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hua B, Han KY, Zhou R, Kim H, Shi X, Abeysirigunawardena SC, Jain A, Singh D, Aggarwal V, Woodson SA, Ha T (2014) An improved surface passivation method for single-molecule studies. Nat Methods 11:1233–1236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huppert JL, Balasubramanian S (2007) G-quadruplexes in promoters throughout the human genome. Nucleic Acids Res 35:406–413

    Article  CAS  PubMed  Google Scholar 

  • Huppert JL, Bugaut A, Kumari S, Balasubramanian S (2008) G-quadruplexes: the beginning and end of UTRs. Nucleic Acids Res 36:6260–6268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Husby J, Todd AK, Platts JA, Neidle S (2013) Small-molecule G-quadruplex interactions: systematic exploration of conformational space using multiple molecular dynamics. Biopolymers 99:989–1005

    CAS  PubMed  Google Scholar 

  • Hwang H, Buncher N, Opresko PL, Myong S (2012) POT1-TPP1 regulates telomeric overhang structural dynamics. Structure 20:1872–1880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang H, Kreig A, Calvert J, Lormand J, Kwon Y, Daley JM, Sung P, Opresko PL, Myong S (2014) Telomeric overhang length determines structural dynamics and accessibility to telomerase and ALT-associated proteins. Structure 22:842–853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iida K, Majima S, Nakamura T, Seimiya H, Nagasawa K (2013) Evaluation of the interaction between long telomeric DNA and macrocyclic hexaoxazole (6OTD) dimer of a G-quadruplex ligand. Molecules 18:4328–4341

    Article  CAS  PubMed  Google Scholar 

  • Ishitsuka Y, Okumus B, Arslan S, Chen KH, Ha T (2010) Temperature-independent porous nanocontainers for single-molecule fluorescence studies. Anal Chem 82: 9694–9701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jena PV, Shirude PS, Okumus B, Laxmi-Reddy K, Godde F, Huc I, Balasubramanian S, Ha T (2009) G-quadruplex DNA bound by a synthetic ligand is highly dynamic. J Am Chem Soc 131:12522–12523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson JE, Cao K, Ryvkin P, Wang LS, Johnson FB (2010) Altered gene expression in the Werner and Bloom syndromes is associated with sequences having G-quadruplex forming potential. Nucleic Acids Res 38:1114–1122

    Article  CAS  PubMed  Google Scholar 

  • Johnson J, Okyere R, Joseph A, Musier-Forsyth K, Kankia B (2013) Quadruplex formation as a molecular switch to turn on intrinsically fluorescent nucleotide analogs. Nucleic Acids Res 41:220–228

    Article  CAS  PubMed  Google Scholar 

  • Joo C, Ha T (2012) Single-molecule FRET with total internal reflection microscopy. Cold Spring Harb Protoc 11:1192–1194

    Google Scholar 

  • Kreig A, Calvert J, Sanoica J, Cullum E, Tipanna R, Myong S (2015) G-quadruplex formation in double strand DNA probed by NMM and CV fluorescence. Nucleic Acids Res. doi:10.1093/nar/gkv749

    PubMed  PubMed Central  Google Scholar 

  • Kruger AC, Birkedal V (2013) Single molecule FRET data analysis procedures for FRET efficiency determination: probing the conformations of nucleic acid structures. Methods 64:36–42

    Article  CAS  PubMed  Google Scholar 

  • Kruger AC, Raarup MK, Nielsen MM, Kristensen M, Besenbacher F, Kjems J, Birkedal V (2010) Interaction of hnRNP A1 with telomere DNA G-quadruplex structures studied at the single molecule level. Eur Biophys J 39:1343–1350

    Article  CAS  PubMed  Google Scholar 

  • Kumari S, Bugaut A, Huppert JL, Balasubramanian S (2007) An RNA G-quadruplex in the 5′ UTR of the NRAS proto-oncogene modulates translation. Nat Chem Biol 3:218–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lane AN, Chaires JB, Gray RD, Trent JO (2008) Stability and kinetics of G-quadruplex structures. Nucleic Acids Res 36:5482–5515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JY, Okumus B, Kim DS, Ha T (2005) Extreme conformational diversity in human telomeric DNA. Proc Natl Acad Sci USA 102:18938–18943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu JQ, Chen CY, Xue Y, Hao YH, Tan Z (2010) G-quadruplex hinders translocation of BLM helicase on DNA: a real-time fluorescence spectroscopic unwinding study and comparison with duplex substrates. J Am Chem Soc 132:10521–10527

    Article  CAS  PubMed  Google Scholar 

  • Long X, Stone MD (2013) Kinetic partitioning modulates human telomere DNA G-quadruplex structural polymorphism. PLoS One 8:e83420

    Article  PubMed  PubMed Central  Google Scholar 

  • Maleki P, Ma Y, Iida K, Nagasawa K, Balci H (2016) A single molecule study of a fluorescently labeled telomestatin derivative and G-quadruplex interactions. Nucleic Acids Res. doi:10.1093/nar/gkw1090

    PubMed  PubMed Central  Google Scholar 

  • Marchand A, Gabelica V (2014) Native electrospray mass spectrometry of DNA G-quadruplexes in potassium solution. J Am Soc Mass Spectrom 25:1146–1154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McLuckie KI, Di Antonio M, Zecchini H, Xian J, Caldas C, Krippendorff BF, Tannahill D, Lowe C, Balasubramanian S (2013) G-quadruplex DNA as a molecular target for induced synthetic lethality in cancer cells. J Am Chem Soc 135:9640–9643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller MC, Buscaglia R, Chaires JB, Lane AN, Trent JO (2010) Hydration is a major determinant of the G-quadruplex stability and conformation of the human telomere 3′ sequence of d(AG3(TTAG3)3). J Am Chem Soc 132:17105–17107

    Article  CAS  PubMed  Google Scholar 

  • Morris MJ, Negishi Y, Pazsint C, Schonhoft JD, Basu S (2010) An RNA G-quadruplex is essential for cap-independent translation initiation in human VEGF IRES. J Am Chem Soc 132:17831–17839

    Article  CAS  PubMed  Google Scholar 

  • Neidle S (2015) A personal history of quadruplex-small molecule targeting. Chem Rec. doi:10.1002/tcr.201500011

    PubMed  Google Scholar 

  • Noer SL, Preus S, Gudnason D, Aznauryan M, Mergny JL, Birkedal V (2016) Folding dynamics and conformational heterogeneity of human telomeric G-quadruplex structures in Na+ solutions by single molecule FRET microscopy. Nucleic Acids Res 44:464–471

    Article  CAS  PubMed  Google Scholar 

  • Ohnmacht SA, Varavipour E, Nanjunda R, Pazitna I, Di Vita G, Gunaratnam M, Kumar A, Ismail MA, Boykin DW, Wilson WD, Neidle S (2014) Discovery of new G-quadruplex binding chemotypes. Chem Commun (Camb) 50:960–963

    Article  CAS  Google Scholar 

  • Okumus B, Ha T (2010) Real-time observation of G-quadruplex dynamics using single-molecule FRET microscopy. Methods Mol Biol 608:81–96

    Article  CAS  PubMed  Google Scholar 

  • Okumus B, Wilson TJ, Lilley DM, Ha T (2004) Vesicle encapsulation studies reveal that single molecule ribozyme heterogeneities are intrinsic. Biophys J 87:2798–2806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okumus B, Arslan S, Fengler SM, Myong S, Ha T (2009) Single molecule nanocontainers made porous using a bacterial toxin. J Am Chem Soc 131:14844–14849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paeschke K, Capra JA, Zakian VA (2011) DNA replication through G-quadruplex motifs is promoted by the Saccharomyces cerevisiae Pif1 DNA helicase. Cell 145:678–691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paeschke K, Bochman ML, Garcia PD, Cejka P, Friedman KL, Kowalczykowski SC, Zakian VA (2013) Pif1 family helicases suppress genome instability at G-quadruplex motifs. Nature 497:458–462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phan AT (2010) Human telomeric G-quadruplex: structures of DNA and RNA sequences. FEBS J 277:1107–1117

    Article  CAS  PubMed  Google Scholar 

  • Phan AT, Luu KN, Patel DJ (2006) Different loop arrangements of intramolecular human telomeric (3 + 1) G-quadruplexes in K+ solution. Nucleic Acids Res 34:5715–5719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin Y, Hurley LH (2008) Structures, folding patterns, and functions of intramolecular DNA G-quadruplexes found in eukaryotic promoter regions. Biochimie 90:1149–1171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qureshi M H, Ray S, Sewell A L, Basu S, Balci H (2012) Replication protein A unfolds G-quadruplex structures with varying degrees of efficiency. J Phys Chem B. doi:10.1021/jp300546u

    PubMed  PubMed Central  Google Scholar 

  • Rahman KM, Tizkova K, Reszka AP, Neidle S, Thurston DE (2012) Identification of novel telomeric G-quadruplex-targeting chemical scaffolds through screening of three NCI libraries. Bioorg Med Chem Lett 22:3006–3010

    Article  CAS  PubMed  Google Scholar 

  • Ray S, Qureshi MH, Malcolm DW, Budhathoki JB, Celik U, Balci H (2013) RPA-mediated unfolding of systematically varying G-quadruplex structures. Biophys J 104:2235–2245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ray S, Bandaria JN, Qureshi MH, Yildiz A, Balci H (2014) G-quadruplex formation in telomeres enhances POT1/TPP1 protection against RPA binding. Proc Natl Acad Sci USA 111:2990–2995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ribeyre C, Lopes J, Boule JB, Piazza A, Guedin A, Zakian VA, Mergny JL, Nicolas A (2009) The yeast Pif1 helicase prevents genomic instability caused by G-quadruplex-forming CEB1 sequences in vivo. PLoS Genet 5:e1000475

    Article  PubMed  PubMed Central  Google Scholar 

  • Roy R, Hohng S, Ha T (2008) A practical guide to single-molecule FRET. Nat Methods 5:507–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saintome C, Amrane S, Mergny JL, Alberti P (2016) The exception that confirms the rule: a higher-order telomeric G-quadruplex structure more stable in sodium than in potassium. Nucleic Acids Res 44:2926–2935

    Article  PubMed  PubMed Central  Google Scholar 

  • Selvin P R, Lougheed T, Tonks Hoffman M, Park H, Balci H, Blehm B H, Toprak E (2007) Constructing sample chambers for fluorescence imaging with one-nanometer accuracy (FIONA). CSH Protoc 2007:pdb prot4867

    PubMed  Google Scholar 

  • Shirude PS, Balasubramanian S (2008) Single molecule conformational analysis of DNA G-quadruplexes. Biochimie 90:1197–1206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sondergaard S, Aznauryan M, Haustrup EK, Schiott B, Birkedal V, Corry B (2015) Dynamics of fluorescent dyes attached to G-quadruplex DNA and their effect on FRET experiments. Chemphyschem 16:2562–2570

    Article  CAS  PubMed  Google Scholar 

  • Stegle O, Payet L, Mergny JL, MacKay DJ, Leon JH (2009) Predicting and understanding the stability of G-quadruplexes. Bioinformatics 25:i374–i382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sundquist WI, Klug A (1989) Telomeric DNA dimerizes by formation of guanine tetrads between hairpin loops. Nature 342:825–829

    Article  CAS  PubMed  Google Scholar 

  • Taylor A, Joseph A, Okyere R, Gogichaishvili S, Musier-Forsyth K, Kankia B (2013) Isothermal quadruplex priming amplification for DNA-based diagnostics. Biophys Chem 171:1–8

    Article  CAS  PubMed  Google Scholar 

  • Tippana R, Xiao W, Myong S (2014) G-quadruplex conformation and dynamics are determined by loop length and sequence. Nucleic Acids Res 42:8106–8114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Todd AK, Johnston M, Neidle S (2005) Highly prevalent putative quadruplex sequence motifs in human DNA. Nucleic Acids Res 33:2901–2907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tran PL, Mergny JL, Alberti P (2011) Stability of telomeric G-quadruplexes. Nucleic Acids Res 39:3282–3294

    Article  CAS  PubMed  Google Scholar 

  • Viglasky V, Bauer L, Tluckova K, Javorsky P (2010) Evaluation of human telomeric G-quadruplexes: the influence of overhanging sequences on quadruplex stability and folding. J Nucleic Acids 2010:820356. doi:10.4061/2010/820356

  • Wang J, Wu L, Ren J, Qu X (2011) Visualizing human telomerase activity with primer-modified au nanoparticles. Small doi:10.1002/smll.201101938

    Google Scholar 

  • Ying L, Green JJ, Li H, Klenerman D, Balasubramanian S (2003) Studies on the structure and dynamics of the human telomeric G quadruplex by single-molecule fluorescence resonance energy transfer. Proc Natl Acad Sci USA 100:14629–14634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yodh JG, Stevens BC, Kanagaraj R, Janscak P, Ha T (2009) BLM helicase measures DNA unwound before switching strands and hRPA promotes unwinding reinitiation. EMBO J 28:405–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • You H, Wu J, Shao F, Yan J (2015) Stability and kinetics of c-MYC promoter G-quadruplexes studied by single-molecule manipulation. J Am Chem Soc 137:2424–2427

    Article  CAS  PubMed  Google Scholar 

  • Zhou Z, Du Y, Zhang L, Dong S (2012) A label-free, G-quadruplex DNAzyme-based fluorescent probe for signal-amplified DNA detection and turn-on assay of endonuclease. Biosens Bioelectron 34:100–105

    Article  CAS  PubMed  Google Scholar 

  • Zhou R, Zhang J, Bochman M L, Zakian V A, Ha T (2014) Periodic DNA patrolling underlies diverse functions of Pif1 on R-loops and G-rich DNA. Elife 3:e02190

    PubMed  PubMed Central  Google Scholar 

  • Zhou J, Tateishi-Karimata H, Mergny JL, Cheng M, Feng Z, Miyoshi D, Sugimoto N, Li C (2016) Reevaluation of the stability of G-quadruplex structures under crowding conditions. Biochimie 121:204–208

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Prof. Victoria Birkedal and Prof. Michael Stone for sharing extensive information regarding their experimental protocols with us. This study was funded by the US National Institutes of Health (Grant Number 1R15GM109386 to H.B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamza Balci.

Ethics declarations

Conflict of interest

All the authors declare no conflict of interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by S. Hohmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maleki, P., Budhathoki, J.B., Roy, W.A. et al. A practical guide to studying G-quadruplex structures using single-molecule FRET. Mol Genet Genomics 292, 483–498 (2017). https://doi.org/10.1007/s00438-017-1288-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-017-1288-2

Keywords

Navigation