Skip to main content
Log in

Development and validation of cross-transferable and polymorphic DNA markers for detecting alien genome introgression in Oryza sativa from Oryza brachyantha

  • Original Article
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

African wild rice Oryza brachyantha (FF), a distant relative of cultivated rice Oryza sativa (AA), carries genes for pests and disease resistance. Molecular marker assisted alien gene introgression from this wild species to its domesticated counterpart is largely impeded due to the scarce availability of cross-transferable and polymorphic molecular markers that can clearly distinguish these two species. Availability of the whole genome sequence (WGS) of both the species provides a unique opportunity to develop markers, which are cross-transferable. We observed poor cross-transferability (~0.75 %) of O. sativa specific sequence tagged microsatellite (STMS) markers to O. brachyantha. By utilizing the genome sequence information, we developed a set of 45 low cost PCR based co-dominant polymorphic markers (STS and CAPS). These markers were found cross-transferrable (84.78 %) between the two species and could distinguish them from each other and thus allowed tracing alien genome introgression. Finally, we validated a Monosomic Alien Addition Line (MAAL) carrying chromosome 1 of O. brachyantha in O. sativa background using these markers, as a proof of concept. Hence, in this study, we have identified a set molecular marker (comprising of STMS, STS and CAPS) that are capable of detecting alien genome introgression from O. brachyantha to O. sativa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abbasi FM, Shah AH, Perveen F, Afzal M, Sajid M, Masood R, Nawaz F (2010) Genomic affinity between Oryza sativa and Oryza brachyantha as revealed by in situ hybridization and chromosome pairing. Afr J Biotechnol 9(21):3068–3072

    Google Scholar 

  • Adebayo RA, Salawu EO (2010) Response of some selected rice varieties to infestation by a root-knot nematode, meloidogyne incognita, Chitwood (1949). Int J Agric Res 5:453–459

    Article  Google Scholar 

  • Aggarwal RK, Brar DS, Khush GS (1997) Two new genomes in the Oryza complex identified on the basis of molecular divergence analysis using total genomic DNA hybridization. Mol Gen Genet 254(1):1–12

    Article  CAS  PubMed  Google Scholar 

  • Angeles-Shim RB, Vinarao RB, Marathi B, Jena KK (2014) Molecular analysis of Oryza latifolia Desv. (CCDD Genome)-derived introgression lines and identification of value-added traits for rice (O. sativa L.) improvement. J Hered 105(5):676–689

    Article  PubMed  Google Scholar 

  • Brar DS, Khush GS (2002) Transferring genes from wild species into rice. In: Kang MS (ed) Quantitative genetics, genomics and plant breeding. CAB International, New York, pp 197–217

    Google Scholar 

  • Brondani C, Rangel PHN, Borba TCO, Brondani RPV (2003) Transferability of microsatellite and sequence tagged site markers in Oryza species. Hereditas 138:187–192

    Article  PubMed  Google Scholar 

  • Chen M, Presting G, Barbazuk WB, Goicoechea JL, Blackmon B, Fang G, Kim H, Frisch D, Yu Y, Sun S, Higingbottom S, Phimphilai J, Phimphilai D, Thurmond S, Gaudette B, Li P, Liu J, Hatfield J, Main D, Farrar K, Henderson C, Barnett L, Costa R, Williams B, Walser S, Atkins M, Hall C, Budiman MA, Tomkins JP, Luo M, Bancroft I, Salse J, Regad F, Mohapatra T, Singh NK, Tyagi AK, Soderlund C, Dean RA, Wing RA (2002) An integrated physical and genetic map of the rice genome. Plant Cell 14:537–545

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen J, Huang Q, Gao D, Wang J, Lang Y, Liu T, Li B, Bai Z, Luis Goicoechea J, Liang C, Chen C, Zhang W, Sun S, Liao Y, Zhang X, Yang L, Song C, Wang M, Shi J, Liu G, Liu J, Zhou H, Zhou W, Yu Q, An N, Chen Y, Cai Q, Wang B, Liu B, Min J, Huang Y, Wu H, Li Z, Zhang Y, Yin Y, Song W, Jiang J, Jackson SA, Wing RA, Wang J, Chen M (2013) Whole-genome sequencing of Oryza brachyantha reveals mechanisms underlying Oryza genome evolution. Nat Commun 4:1595

    Article  PubMed  PubMed Central  Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12(1):13–15

    Google Scholar 

  • Fan C, Walling JG, Zhang J, Hirsch CD, Jiang J, Wing RA (2011) Conservation and purifying selection of transcribed genes located in a rice centromere. Plant Cell 23:2821–2830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu SX, Zhan Y, Zhi HJ, Gai JY, Yu DY (2006) Mapping of SMV resistance gene Rsc-7 by SSR markers in soybean. Genetica 128:63–69

    Article  CAS  PubMed  Google Scholar 

  • Gao LZ, Zhang CH, Jia JZ, Dong YS (2005) Cross-species transferability of rice microsatellites in its wild relatives and the potential for conservation genetic studies. Genet Resour Crop Evol 52:931–940

    Article  CAS  Google Scholar 

  • Gupta PK, Varshney RK (2000) The development and use of microsatellite markers for genetic analysis and plant breeding with emphasis on bread wheat. Euphytica 113:163–185

    Article  CAS  Google Scholar 

  • Hai L, Wagner C, Friedt W (2007) Quantitative structure analysis of genetic diversity among spring bread wheats (Triticum aestivum L.) from different geographical regions. Genetica 130:213–225

    Article  CAS  PubMed  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp 41:95–98

    CAS  Google Scholar 

  • Hernandez P, Laurie DA, Martin A, Snape JW (2002) Utility of barley and wheat simple sequence repeat (SSR) markers for genetic analysis of Hordeum chilense and tritordeum. Theor Appl Genet 104:735–739

    Article  CAS  PubMed  Google Scholar 

  • Jena KK, Khush GS (1989) Monosomic alien addition lines of rice: production, morphology, cytology, and breeding behavior. Genome 32:449–455

    Article  Google Scholar 

  • Jin H, Tan G, Brar DS, Tang M, Li G, Zhu L, He G (2006) Molecular and cytogenetic characterization of an Oryza officinalis-O. sativa chromosome 4 addition line and its progenies. Plant Mol Biol 62:769–777

    Article  CAS  PubMed  Google Scholar 

  • Konieczny A, Ausubel FM (1993) A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. Plant J 4(2):403–410

    Article  CAS  PubMed  Google Scholar 

  • Krishnan SG, Waters DLE, Henry RJ (2014) Australian wild rice reveals pre-domestication origin of polymorphism deserts in rice genome. PLoS One 9(6):e98843

    Article  Google Scholar 

  • Lee HR, Zhang W, Langdon T, Jin W, Yan H, Cheng Z, Jiang J (2005) Chromatin immune precipitation cloning reveals rapid evolutionary patterns of centromeric DNA in Oryza species. Proc Natl Acad Sci USA 102(33):11793–11798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li G, Hu W, Qin R, Jin H, Tan G, Zhu L, He G (2008) Simple sequence repeat analyses of interspecific hybrids and MAALs of Oryza officinalis and Oryza sativa. Genetica 134:169–180

    Article  CAS  PubMed  Google Scholar 

  • Lorieux M, Ndjiondjop MN, Ghesquiere A (2000) A first interspecific Oryza sativa x Oryza glaberrima microsatellite-based genetic map. Theor Appl Genet 100:591–601

    Google Scholar 

  • McCouch SR, Chen X, Panaud O, Temnykh S, Xu Y, Cho YG, Huang N, Ishii T, Blair M (1997) Micro-satellite marker development, mapping and application in rice genetics and breeding. Plant Mol Biol 35:89–99

    Article  CAS  PubMed  Google Scholar 

  • McCouch SR, Teytelman K, Xu Y, Lobos KB, Clare K, Walton M, Fu B, Maghirang R, Li Z, Xing Y, Zhang Q, Kono I, Yano M, Fjellstrom R, DeClerck G, Schneider D, Cartinhour S, Ware D, Stein L (2002) Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Res 9:199–207

    Article  CAS  PubMed  Google Scholar 

  • Mullan DJ, Platteter A, Teakle NL, Appels R, Colmer TD, Anderson JM, Francki MG (2005) EST-derived SSR markers from defined regions of the wheat genome to identify Lophopyrum elongatum specific loci. Genome 48:811–822

    Article  CAS  PubMed  Google Scholar 

  • Multani DS, Jena KK, Brar DS (1994) Development of monosomic alien addition lines and introgression of genes from Oryza australiensis domain to cultivated rice Oryza sativa L. Theor Appl Genet 88:102–109

    Article  CAS  PubMed  Google Scholar 

  • Multani DS, Khush GS, DelosReyes BG, Brar DS (2003) Alien genes introgression and development of monosomic alien addition lines from Oryza latifolia Desv. to rice, Oryza sativa L. Theor Appl Genet 107:395–405

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A reviced medium for rapid growth and bioassays with tobacco tissue cultures. Plant Physiol 15:473–497

    Article  CAS  Google Scholar 

  • Olson M, Hood L, Cantor C, Botstein D (1989) A common language for physical mapping of the human genome. Science 245:1434–1435

    Article  CAS  PubMed  Google Scholar 

  • Panaud O, Chen X, McCouch SR (1996) Development of microsatellite markers and characterization of simple sequence length polymorphism (SSLP) in rice (Oryza sativa L.). Mol Gen Genet 252:597–607

    CAS  PubMed  Google Scholar 

  • Ramachandran R, Khan Z (1991) Mechanisms of resistance in wild rice Oryza brachyantha to rice leaf folder Cnaphalocrocis medinalis (Guenee) (Lepidoptera: Pyralidae). J Chem Ecol 17(1):41–65

    Article  CAS  PubMed  Google Scholar 

  • Roder MS, Plaschke J, Konig SU, Borner A, Sorrells ME, Tanksley SD, Ganal MW (1995) Abundance, variability and chromosomal location of microsatellites in wheat. Mol Genet Genomics 2(46):327–333

    Article  Google Scholar 

  • Sanchez PL, Wing RA, Brar DS (2013) The wild relative of rice: genomes and genomics. In: Zhang Q, Wing RA (eds) Genetics and genomics of rice, plant genetics and genomics: crops and models 5. Springer Science, New York, pp 9–25

    Chapter  Google Scholar 

  • Shakiba E, Eizenga GC (2014) Unraveling the secrets of rice wild species. ISBN 978-953-51-1240-2

  • Uozu S, Ikehashi H, Ohmido N, Ohtsubo H, Ohtsubo E, Fukui K (1997) Repetitive sequences: cause for variation in genome size and chromosome morphology in the genus Oryza. Plant Mol Biol 35:791–799

    Article  CAS  PubMed  Google Scholar 

  • Van Huynh N (1993) Genetic variation in populations of the yellow stemborer, Scirpophaga incertulas (Walker), and biological basis of resistance of the Oryza sativa (IR56) x Oryza brachyantha hybrid to the pest. Los Banos, Laguna

    Google Scholar 

  • Vaughan DA (1994) The wild relatives of rice: a genetic resources handbook. International Rice Research Institute, Manila, p 137

    Google Scholar 

  • Vaughan DA, Morishima H, Kadowaki K (2003) Diversity in the Oryza genus. Curr Opin Plant Mol Biol 6:139–146

    Article  CAS  Google Scholar 

  • Viajante V, Heinrichs E (1986) Rice growth and yield as affected by the whorl maggot Hydrellia philippina Ferino (Diptera: Ephydridae). Crop Prot 5(3):176–181

    Article  Google Scholar 

  • Wu KS, Tanksley SD (1993) Abundance, polymorphism and genetic mapping of microsatellites in rice. Mol Gen Genet 241:225–235

    Article  CAS  PubMed  Google Scholar 

  • Yasui H, Iwata N (1991) Production of monosomic alien addition lines of Oryza sativa having a single O. punctata chromosome. In: Rice Genetics II, IRRI, Manila, pp 147–155

Download references

Acknowledgments

The authors acknowledge the financial support provided by Director, NRRI to conduct this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trilochan Mohapatra.

Ethics declarations

Conflict of interest

All the authors declare that they have no conflicting interest.

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by B. Yang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Comparative analysis of O. sativa and O. brachyantha genomes. A. Chromosome-size (in Mb) variations in O. sativa (red) and O. brachyantha (blue). B. Relative contribution (in percentage) of each chromosome to constitute the genomes of O. sativa (red) and O. brachyantha(blue). C. Gene content in each chromosome (expressed in terms of percentage of total gene content) of O. sativa (red) and O. brachyantha (red) (JPEG 792 kb)

Fig. S2

PCR analysis using genic STS and CAPS markers belonging to different chromosomes. Name of the markers mentioned at the top of the parentheses. Lanes: Os: Oryza sativa; Ob: Oryza brachyantha; 48: B2-48; M1: 100 bp ladder (Fermentas); M2: 1 kb ladder (Fermentas); M3: 50 bp ladder (Fermentas). (JPEG 1493 kb)

Supplementary material 3 (XLSX 1454 kb)

Supplementary material 4 (DOCX 42 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ray, S., Bose, L.K., Ray, J. et al. Development and validation of cross-transferable and polymorphic DNA markers for detecting alien genome introgression in Oryza sativa from Oryza brachyantha . Mol Genet Genomics 291, 1783–1794 (2016). https://doi.org/10.1007/s00438-016-1214-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-016-1214-z

Keywords

Navigation