Skip to main content
Log in

Correlated expression of retrocopies and parental genes in zebrafish

  • Original Article
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Previous studies of the function and evolution of retrocopies in plants, Drosophila and non-mammalian chordates provided new insights into the origin of novel genes. However, little is known about retrocopies and their parental genes in teleosts, and it remains obscure whether there is any correlation between them. The present study aimed to characterize the spatial and temporal expression profiles of retrogenes and their parental genes based on RNA-Seq data from Danio rerio embryos and tissues from adult. Using a modified pipeline, 306 retrocopies were identified in the zebrafish genome, most of which exhibited ancient retroposition, and 76 of these showed a Ks < 2.0. Expression of a retrocopy is generally expected to present no correlation with its parental gene, as regulatory regions are not part of the retroposition event. Here, this assumption was tested based on RNA-Seq data from eight stages and thirteen tissue types of zebrafish. However, the result suggested that retrocopies displayed correlated expression with their parental genes. The level of correlation was found to decrease during embryogenesis, but to increase slightly within a tissue using Ks as the proxy for the divergence time. Tissue specificity was also observed: retrocopies were found to be expressed at a more specific level compared with their parental genes. Unlike Drosophila, which has sex chromosomes, zebrafish do not show testis-biased expression. Our study elaborated temporal and spatial patterns of expression of retrocopies in zebrafish, examined the correlation between retrocopies and parental genes and analyzed potential source of regulated elements of retrocopies, which lay a foundation for further functional study of retrocopies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Aanes H, Winata CL, Lin CH, Chen JP, Srinivasan KG, Lee SG, Lim AY, Hajan HS, Collas P, Bourque G, Gong Z, Korzh V, Alestrom P, Mathavan S (2011) Zebrafish mRNA sequencing deciphers novelties in transcriptome dynamics during maternal to zygotic transition. Genome Res 21(8):1328–1338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amores A, Force A, Yan YL, Joly L, Amemiya C, Fritz A, Ho RK, Langeland J, Prince V, Wang YL, Westerfield M, Ekker M, Postlethwait JH (1998) Zebrafish hox clusters and vertebrate genome evolution. Science 282(5394):1711–1714

    Article  CAS  PubMed  Google Scholar 

  • Amores A, Catchen J, Ferrara A, Fontenot Q, Postlethwait JH (2011) Genome evolution and meiotic maps by massively parallel DNA sequencing: spotted gar, an outgroup for the teleost genome duplication. Genetics 188(4):799–808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bai Y, Casola C, Feschotte C, Betran E (2007) Comparative genomics reveals a constant rate of origination and convergent acquisition of functional retrogenes in Drosophila. Genome Biol 8(1):R11

    Article  PubMed  PubMed Central  Google Scholar 

  • Bai Y, Casola C, Betran E (2008) Evolutionary origin of regulatory regions of retrogenes in Drosophila. BMC Genom 9:241

    Article  Google Scholar 

  • Betran E, Long M (2003) Dntf-2r, a young Drosophila retroposed gene with specific male expression under positive Darwinian selection. Genetics 164(3):977–988

    CAS  PubMed  PubMed Central  Google Scholar 

  • Betran E, Thornton K, Long M (2002) Retroposed new genes out of the X in Drosophila. Genome Res 12(12):1854–1859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birney E, Durbin R (1997) Dynamite: a flexible code generating language for dynamic programming methods used in sequence comparison. Proc Int Conf Intell Syst Mol Biol 5:56–64

    CAS  PubMed  Google Scholar 

  • Castillo-Davis CI, Hartl DL, Achaz G (2004) cis-Regulatory and protein evolution in orthologous and duplicate genes. Genome Res 14(8):1530–1536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen S, Zhang YE, Long M (2010) New genes in Drosophila quickly become essential. Science 330(6011):1682–1685

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Zou M, Fu B, Li X, Vibranovski MD, Gan X, Wang D, Wang W, Long M, He S (2011) Evolutionary patterns of RNA-based duplication in non-mammalian chordates. PLoS One 6(7):e21466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collins JE, White S, Searle SM, Stemple DL (2012) Incorporating RNA-seq data into the zebrafish Ensembl genebuild. Genome Res 22(10):2067–2078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding Y, Zhao L, Yang S, Jiang Y, Chen Y, Zhao R, Zhang Y, Zhang G, Dong Y, Yu H, Zhou Q, Wang W (2010) A young Drosophila duplicate gene plays essential roles in spermatogenesis by regulating several Y-linked male fertility genes. PLoS Genet 6(12):e1001255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emerson JJ, Kaessmann H, Betran E, Long M (2004) Extensive gene traffic on the mammalian X chromosome. Science 303(5657):537–540

    Article  CAS  PubMed  Google Scholar 

  • Ferris SDaW GS (1979) Evolution of the differential regulation of duplicate genes after polyploidization. J Mol Evol 12:267–317

    Article  Google Scholar 

  • Fontanillas P, Hartl DL, Reuter M (2007) Genome organization and gene expression shape the transposable element distribution in the Drosophila melanogaster euchromatin. PLoS Genet 3(11):e210

    Article  PubMed  PubMed Central  Google Scholar 

  • Force A, Lynch M, Pickett FB, Amores A, Yan YL, Postlethwait J (1999) Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151(4):1531–1545

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fu B, Chen M, Zou M, Long M, He S (2010) The rapid generation of chimerical genes expanding protein diversity in zebrafish. BMC Genom 11:657

    Article  CAS  Google Scholar 

  • Gilbert N, Boyle S, Fiegler H, Woodfine K, Carter NP, Bickmore WA (2004) Chromatin architecture of the human genome: gene-rich domains are enriched in open chromatin fibers. Cell 118(5):555–566

    Article  CAS  PubMed  Google Scholar 

  • Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29(7):644–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu Z, Nicolae D, Lu HH, Li WH (2002) Rapid divergence in expression between duplicate genes inferred from microarray data. Trends Genet 18(12):609–613

    Article  CAS  PubMed  Google Scholar 

  • Gu Z, Rifkin SA, White KP, Li WH (2004) Duplicate genes increase gene expression diversity within and between species. Nat Genet 36(6):577–579

    Article  CAS  PubMed  Google Scholar 

  • Hasselmann M, Lechner S, Schulte C, Beye M (2010) Origin of a function by tandem gene duplication limits the evolutionary capability of its sister copy. Proc Natl Acad Sci USA 107(30):13378–13383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoegg S, Brinkmann H, Taylor JS, Meyer A (2004) Phylogenetic timing of the fish-specific genome duplication correlates with the diversification of teleost fish. J Mol Evol 59(2):190–203

    Article  CAS  PubMed  Google Scholar 

  • Jaillon OAJ, Brunet F, (61 co-authors) et al (2004) Genome dupli-cation in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype. Nature 431:946–957

    Article  PubMed  Google Scholar 

  • Jeffs P, Ashburner M (1991) Processed pseudogenes in Drosophila. Proc Biol Sci 244(1310):151–159

    Article  CAS  PubMed  Google Scholar 

  • Kaessmann H, Vinckenbosch N, Long M (2009) RNA-based gene duplication: mechanistic and evolutionary insights. Nat Rev Genet 10(1):19–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalamegham R, Sturgill D, Siegfried E, Oliver B (2007) Drosophila mojoless, a retroposed GSK-3, has functionally diverged to acquire an essential role in male fertility. Mol Biol Evol 24(3):732–742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaushik K, Leonard VE, Kv S, Lalwani MK, Jalali S, Patowary A, Joshi A, Scaria V, Sivasubbu S (2013) Dynamic expression of long non-coding RNAs (lncRNAs) in adult zebrafish. PLoS ONE 8(12):e83616

    Article  PubMed  PubMed Central  Google Scholar 

  • Kettleborough RN, Busch-Nentwich EM, Harvey SA, Dooley CM, de Bruijn E, van Eeden F, Sealy I, White RJ, Herd C, Nijman IJ, Fenyes F, Mehroke S, Scahill C, Gibbons R, Wali N, Carruthers S, Hall A, Yen J, Cuppen E, Stemple DL (2013) A systematic genome-wide analysis of zebrafish protein-coding gene function. Nature 496(7446):494–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim D, Salzberg SL (2011) TopHat-Fusion: an algorithm for discovery of novel fusion transcripts. Genome Biol 12(8):R72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korzh V (2009) Before maternal-zygotic transition… There was morphogenetic function of nuclei. Zebrafish 6(3):295–302

    Article  PubMed  Google Scholar 

  • Lercher MJ, Williams EJ, Hurst LD (2001) Local similarity in evolutionary rates extends over whole chromosomes in human-rodent and mouse-rat comparisons: implications for understanding the mechanistic basis of the male mutation bias. Mol Biol Evol 18(11):2032–2039

    Article  CAS  PubMed  Google Scholar 

  • Li WH, Yang J, Gu X (2005) Expression divergence between duplicate genes. Trends Genet 21(11):602–607

    Article  PubMed  Google Scholar 

  • Li C, Orti G, Zhang G, Lu G (2007) A practical approach to phylogenomics: the phylogeny of ray-finned fish (Actinopterygii) as a case study. BMC Evol Biol 7:44

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Z, Zhang H, Ge S, Gu X, Gao G, Luo J (2009) Expression pattern divergence of duplicated genes in rice. BMC Bioinformatics 10(Suppl 6):S8

    Article  Google Scholar 

  • Long M, Langley CH (1993) Natural selection and the origin of jingwei, a chimeric processed functional gene in Drosophila. Science 260(5104):91–95

    Article  CAS  PubMed  Google Scholar 

  • Makova KD, Li WH (2003) Divergence in the spatial pattern of gene expression between human duplicate genes. Genome Res 13(7):1638–1645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Markert CL (1964) Cellular differentiation—an expression of differential gene function. In: Congenital malformations, Internation Medical Congress, p 163–174

  • Marques AC, Dupanloup I, Vinckenbosch N, Reymond A, Kaessmann H (2005) Emergence of young human genes after a burst of retroposition in primates. PLoS Biol 3(11):e357

    Article  PubMed  PubMed Central  Google Scholar 

  • McCarrey JR (1987) Nucleotide sequence of the promoter region of a tissue-specific human retroposon: comparison with its housekeeping progenitor. Gene 61(3):291–298

    Article  CAS  PubMed  Google Scholar 

  • Meyer A, Van de Peer Y (2005) From 2R to 3R: evidence for a fish-specific genome duplication (FSGD). BioEssays 27(9):937–945

    Article  CAS  PubMed  Google Scholar 

  • Mighell AJ, Smith NR, Robinson PA, Markham AF (2000) Vertebrate pseudogenes. FEBS Lett 468(2–3):109–114

    Article  CAS  PubMed  Google Scholar 

  • Nakatani Y, Takeda H, Kohara Y, Morishita S (2007) Reconstruction of the vertebrate ancestral genome reveals dynamic genome reorganization in early vertebrates. Genome Res 17(9):1254–1265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Near TJ, Dornburg A, Eytan RI, Keck BP, Smith WL, Kuhn KL, Moore JA, Price SA, Burbrink FT, Friedman M, Wainwright PC (2013) Phylogeny and tempo of diversification in the superradiation of spiny-rayed fishes. Proc Natl Acad Sci USA 110(31):12738–12743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nekrutenko A, Makova KD, Li WH (2002) The K(A)/K(S) ratio test for assessing the protein-coding potential of genomic regions: an empirical and simulation study. Genome Res 12(1):198–202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newport JKM (1982) A major developmental transition in early Xenopus embryos: i. Characterization and timing of cellular changes at the midblastula stage. Cell 30:675–686

    Article  CAS  PubMed  Google Scholar 

  • Neyfakh A (1956) The changes of radiosensitivity in the course of fertilization in the loach Misgurnus fossilis. Dokl Akad Nauk SSSR 109:943–946

    Google Scholar 

  • Ohno S (ed) (1970) Evolution by Gene Duplication. Springer-Verlag

  • Okamura K, Nakai K (2008) Retrotransposition as a source of new promoters. Mol Biol Evol 25(6):1231–1238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pauli A, Valen E, Lin MF, Garber M, Vastenhouw NL, Levin JZ, Fan L, Sandelin A, Rinn JL, Regev A, Schier AF (2012) Systematic identification of long noncoding RNAs expressed during zebrafish embryogenesis. Genome Res 22(3):577–591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pearson WR (1990) Rapid and sensitive sequence comparison with FASTP and FASTA. Methods Enzymol 183:63–98

    Article  CAS  PubMed  Google Scholar 

  • Peterson AG, Wang X, Yost HJ (2013) Dvr1 transfers left-right asymmetric signals from Kupffer’s vesicle to lateral plate mesoderm in zebrafish. Dev Biol 382(1):198–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petrov DA, Lozovskaya ER, Hartl DL (1996) High intrinsic rate of DNA loss in Drosophila. Nature 384(6607):346–349

    Article  CAS  PubMed  Google Scholar 

  • Sakai H, Mizuno H, Kawahara Y, Wakimoto H, Ikawa H, Kawahigashi H, Kanamori H, Matsumoto T, Itoh T, Gaut BS (2011) Retrogenes in rice (Oryza sativa L. ssp. japonica) exhibit correlated expression with their source genes. Genome Biol Evol 3:1357–1368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shiao MS, Liao BY, Long M, Yu HT (2008) Adaptive evolution of the insulin two-gene system in mouse. Genetics 178(3):1683–1691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siddiqui M, Sheikh H, Tran C, Bruce AE (2010) The tight junction component Claudin E is required for zebrafish epiboly. Dev Dyn 239(2):715–722

    Article  CAS  PubMed  Google Scholar 

  • Soares MB, Schon E, Henderson A, Karathanasis SK, Cate R, Zeitlin S, Chirgwin J, Efstratiadis A (1985) RNA-mediated gene duplication: the rat preproinsulin I gene is a functional retroposon. Mol Cell Biol 5(8):2090–2103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stoltzfus A (1999) On the possibility of constructive neutral evolution. J Mol Evol 49(2):169–181

    Article  CAS  PubMed  Google Scholar 

  • Taylor JS, Braasch I, Frickey T, Meyer A, Van de Peer Y (2003) Genome duplication, a trait shared by 22000 species of ray-finned fish. Genome Res 13(3):382–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thisse B and Thisse C (2004) Fast release clones: a high throughput expression analysis. ZFIN direct data submission 2

  • Thisse B, Wright GJ and Thisse C (2008) Embryonic and larval expression patterns from a large scale screening for novel low affinity extracellular protein interactions. ZFIN direct data submission

  • Torrents D, Suyama M, Zdobnov E, Bork P (2003) A genome-wide survey of human pseudogenes. Genome Res 13(12):2559–2567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25(9):1105–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7(3):562–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Urrutia AO, Hurst LD (2001) Codon usage bias covaries with expression breadth and the rate of synonymous evolution in humans, but this is not evidence for selection. Genetics 159(3):1191–1199

    CAS  PubMed  PubMed Central  Google Scholar 

  • Van de Peer YTJ, Meyer A (2003) Are all fishes ancient polyploids? J Struct Funct Genomics 3:65–73

    Article  PubMed  Google Scholar 

  • Vinckenbosch N, Dupanloup I, Kaessmann H (2006) Evolutionary fate of retroposed gene copies in the human genome. Proc Natl Acad Sci USA 103(9):3220–3225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W, Zhang J, Alvarez C, Llopart A, Long M (2000) The origin of the Jingwei gene and the complex modular structure of its parental gene, yellow emperor, Drosophila melanogaster. Mol Biol Evol 17(9):1294–1301

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Brunet FG, Nevo E, Long M (2002) Origin of sphinx, a young chimeric RNA gene in Drosophila melanogaster. Proc Natl Acad Sci USA 99(7):4448–4453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Wang S, Li W (2012) RSeQC: quality control of RNA-seq experiments. Bioinformatics 28(16):2184–2185

    Article  CAS  PubMed  Google Scholar 

  • Waterman MS, Eggert M (1987) A new algorithm for best subsequence alignments with application to tRNA-rRNA comparisons. J Mol Biol 197(4):723–728

    Article  CAS  PubMed  Google Scholar 

  • Williams EJ, Hurst LD (2002) Is the synonymous substitution rate in mammals gene-specific? Mol Biol Evol 19(8):1395–1398

    Article  CAS  PubMed  Google Scholar 

  • Yamashita R, Suzuki Y, Sugano S, Nakai K (2005) Genome-wide analysis reveals strong correlation between CpG islands with nearby transcription start sites of genes and their tissue specificity. Gene 350(2):129–136

    Article  CAS  PubMed  Google Scholar 

  • Yang Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24(8):1586–1591

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Zou M, Fu B, He S (2013) Genome-wide identification, characterization, and expression analysis of lineage-specific genes within zebrafish. BMC Genom 14(1):65

    Article  CAS  Google Scholar 

  • Ye M, Berry-Wynne KM, Asai-Coakwell M, Sundaresan P, Footz T, French CR, Abitbol M, Fleisch VC, Corbett N, Allison WT, Drummond G, Walter MA, Underhill TM, Waskiewicz AJ, Lehmann OJ (2010) Mutation of the bone morphogenetic protein GDF3 causes ocular and skeletal anomalies. Hum Mol Genet 19(2):287–298

    Article  CAS  PubMed  Google Scholar 

  • Yeo G, Hoon S, Venkatesh B, Burge CB (2004) Variation in sequence and organization of splicing regulatory elements in vertebrate genes. Proc Natl Acad Sci USA 101(44):15700–15705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Harrison PM, Liu Y, Gerstein M (2003) Millions of years of evolution preserved: a comprehensive catalog of the processed pseudogenes in the human genome. Genome Res 13(12):2541–2558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Carriero N, Gerstein M (2004) Comparative analysis of processed pseudogenes in the mouse and human genomes. Trends Genet 20(2):62–67

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are thankful to Beide Fu and Ming Zou for their critical comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shunping He.

Ethics declarations

Funding

This study was funded by the grants from Chinese Academy of Sciences (XDB13020100) and National Natural Science Foundation of China (91131014).

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

The methods involving animals in this study were conducted in accordance with the Laboratory Animal Management Principles of China. All experimental protocols were approved by the Ethics Committee of the Institute of Hydrobiology, Chinese Academy of Sciences.

Data access

The RNA-Seq data have been submitted to the NCBI Sequence Read Archive (SRA) with accession number SRR16957302. The retrocopies sequences have been submitted to Genbank (http://www.ncbi.nlm.nih.gov/genbank/) with accession number from KP324775 to KP324787.

Authors’ contributions

ZZ developed the algorithm, performed the analyses, and drafted the manuscript. LY participated in algorithm development. YZ participated in the design of the study and data analysis. SH conceived of the study, participated in its design and coordination, and helped to analyze the data. All authors read and approved the final manuscript.

Additional information

Communicated by J. Cerdá.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Results of RT-PCR. (TIFF 4176 kb)

Read quality and coverage of heart and brain (TIFF 3043 kb)

Frequency count of FPKM of intergenic region. (TIFF 2543 kb)

Four sources of regulatory elements for retrocopies (TIFF 704 kb)

FPKM values for zebrafish head, body and gonad of two sexes (TIFF 2127 kb)

The biological replicates analysis (DOCX 16 kb)

Retrocopies and their distributions of Ka, Ks, and ω. (XLS 55 kb)

Structures of the retrocopies. (XLS 61 kb)

Mean FPKM of intact retrocopies and retropseudogenes. (XLS 49 kb)

Primers used for RT-PCR. (XLS 25 kb)

List of Pearson coefficients. (XLS 51 kb)

Results of PAML. (XLS 80 kb)

Shannon entropy of retrocopies and parental genes (XLSX 19 kb)

Pearson coefficients of parental genes and promoter regions. (XLSX 18 kb)

A list of the 35 retrocopies which showed divergent expression with parental genes. (XLSX 11 kb)

11 pairs retrocopies with flcDNAs (XLSX 11 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, Z., Yang, L., Zhang, Y.E. et al. Correlated expression of retrocopies and parental genes in zebrafish. Mol Genet Genomics 291, 723–737 (2016). https://doi.org/10.1007/s00438-015-1140-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-015-1140-5

Keywords