Genetic dissection of the maize kernel development process via conditional QTL mapping for three developing kernel-related traits in an immortalized F2 population

Abstract

Kernel development is an important dynamic trait that determines the final grain yield in maize. To dissect the genetic basis of maize kernel development process, a conditional quantitative trait locus (QTL) analysis was conducted using an immortalized F2 (IF2) population comprising 243 single crosses at two locations over 2 years. Volume (KV) and density (KD) of dried developing kernels, together with kernel weight (KW) at different developmental stages, were used to describe dynamic changes during kernel development. Phenotypic analysis revealed that final KW and KD were determined at DAP22 and KV at DAP29. Unconditional QTL mapping for KW, KV and KD uncovered 97 QTLs at different kernel development stages, of which qKW6b, qKW7a, qKW7b, qKW10b, qKW10c, qKV10a, qKV10b and qKV7 were identified under multiple kernel developmental stages and environments. Among the 26 QTLs detected by conditional QTL mapping, conqKW7a, conqKV7a, conqKV10a, conqKD2, conqKD7 and conqKD8a were conserved between the two mapping methodologies. Furthermore, most of these QTLs were consistent with QTLs and genes for kernel development/grain filling reported in previous studies. These QTLs probably contain major genes associated with the kernel development process, and can be used to improve grain yield and quality through marker-assisted selection.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. Alvarez Prado S, Lopez CG, Senior ML, Borras L (2014a) The genetic architecture of maize (Zea mays L.) kernel weight determination. G3 (Bethesda) 4:1611–1621

    Article  Google Scholar 

  2. Alvarez Prado S, Sadras VO, Borras L (2014b) Independent genetic control of maize (Zea mays L.) kernel weight determination and its phenotypic plasticity. J Exp Bot 65:4479–4487

    PubMed  Article  Google Scholar 

  3. Bhave MR, Lawrence S, Barton C, Hannah LC (1990) Identification and molecular characterization of shrunken-2 cDNA clones of maize. Plant Cell 2:581–588

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  4. Blewley JD, Black M (1985) Seeds: physiology of development and germination. Plenum Press, New York, pp 41–42

    Google Scholar 

  5. Borrás L, Gambín BL (2010) Trait dissection of maize kernel weight: towards integrating hierarchical scales using a plant growth approach. Field Crops Res 118:1–12

    Article  Google Scholar 

  6. Borrás L, Westgate ME (2006) Predicting maize kernel sink capacity early in development. Field Crops Res 95:223–233

    Article  Google Scholar 

  7. Borrás L, Westgate ME, Otegui ME (2003) Control of kernel weight and kernel water relations by post-flowering source-sink ratio in maize. Ann Bot 91:857–867

    PubMed  PubMed Central  Article  Google Scholar 

  8. Borrás L, Slafer GA, Otegui ME (2004) Seed dry weight response to source–sink manipulations in wheat, maize and soybean: a quantitative reappraisal. Field Crops Res 86:131–146

    Article  Google Scholar 

  9. Borrás L, Zinselmeier C, Senior ML, Westgate ME, Muszynski MG (2009) Characterization of grain-filling patterns in diverse maize germplasm. Crop Sci 49:999–1009

    Article  Google Scholar 

  10. Bruce AB (1910) The Mendelian theory of heredity and the augmentation of vigor. Science 32:627–628

    PubMed  CAS  Article  Google Scholar 

  11. Cheng WH, Taliercio EW, Chourey PS (1996) The miniature1 seed locus of maize encodes a cell wall invertase required for normal development of endosperm and maternal cells in the pedicel. Plant Cell 8:971–983

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  12. Duvick DN (2005) The contribution of breeding to yield advances in maize (Zea mays L.). Adv Agron 86:83–145

    Article  Google Scholar 

  13. Duvick DN, Cassman KG (1999) Post-green revolution trends in yield potential of temperate maize in the north-central United States. Crop Sci 39:1622–1630

    Article  Google Scholar 

  14. East EM (1936) Heterosis. Genetics 21:375–397

    PubMed  CAS  PubMed Central  Google Scholar 

  15. Ettenhuber C, Spielbauer G, Margl L, Hannah LC, Gierl A, Bacher A, Genschel U, Eisenreich W (2005) Changes in flux pattern of the central carbohydrate metabolism during kernel development in maize. Phytochemistry 66:2632–2642

    PubMed  CAS  Article  Google Scholar 

  16. Frascaroli E, Cane MA, Landi P, Pea G, Gianfranceschi L, Villa M, Morgante M, Pe ME (2007) Classical genetic and quantitative trait loci analyses of heterosis in a maize hybrid between two elite inbred lines. Genetics 176:625–644

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  17. Fu J, Cheng Y, Linghu J, Yang X, Kang L, Zhang Z, Zhang J, He C, Du X, Peng Z, Wang B, Zhai L, Dai C, Xu J, Wang W, Li X, Zheng J, Chen L, Luo L, Liu J, Qian X, Yan J, Wang J, Wang G (2013) RNA sequencing reveals the complex regulatory network in the maize kernel. Nat Commun 4:2832

    PubMed  Google Scholar 

  18. Gambin BL, Borrás L, Otegui ME (2006) Source-sink relations and kernel weight differences in maize temperate hybrids. Field Crops Res 95:316–326

    Article  Google Scholar 

  19. Gambin BL, Borrás L, Otegui ME (2008) Kernel weight dependence upon plant growth at different grain-filling stages in maize and sorghum. Aust J Agr Res 59:280–290

    Article  Google Scholar 

  20. Gore MA, Chia JM, Elshire RJ, Sun Q, Ersoz ES, Hurwitz BL, Peiffer JA, McMullen MD, Grills GS, Ross-Ibarra J, Ware DH, Buckler ES (2009) A first-generation haplotype map of maize. Science 326:1115–1117

    PubMed  CAS  Article  Google Scholar 

  21. Guo T, Yang N, Tong H, Pan Q, Yang X, Tang J, Wang J, Li J, Yan J (2014) Genetic basis of grain yield heterosis in an “immortalized F2” maize population. Theor Appl Genet 127:2149–2158

    PubMed  Article  Google Scholar 

  22. Gupta PK, Rustgi S, Kumar N (2006) Genetic and molecular basis of grain size and grain number and its relevance to grain productivity in higher plants. Genome 49:565–571

    PubMed  Article  Google Scholar 

  23. Gustin JL, Jackson S, Williams C, Patel A, Armstrong P, Peter GF, Settles AM (2013) Analysis of maize (Zea mays L.) kernel density and volume using microcomputed tomography and single-kernel near-infrared spectroscopy. J Agric Food Chem 61:10872–10880

    PubMed  CAS  Article  Google Scholar 

  24. Hua J, Xing Y, Xu C, Sun X, Yu S, Zhang Q (2002) Genetic dissection of an elite rice hybrid revealed that heterozygotes are not always advantageous for performance. Genetics 162:1885–1895

    PubMed  CAS  PubMed Central  Google Scholar 

  25. Hua J, Xing Y, Wu W, Xu C, Sun X, Yu S, Zhang Q (2003) Single-locus heterotic effects and dominance by dominance interactions can adequately explain the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci USA 100:2574–2579

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  26. Jin X, Fu Z, Ding D, Li W, Liu Z, Tang J (2013) Proteomic identification of genes associated with maize grain-filling rate. PLoS One 8:e59353

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  27. Jones DF (1917) Dominance of linked factors as a means of accounting for heterosis. Genetics 2:466–479

    PubMed  CAS  PubMed Central  Google Scholar 

  28. Jones RJ, Simmons SR (1983) Effect of altered source-sink ratio on growth of maize kernels. Crop Sci 23:129–134

    Article  Google Scholar 

  29. Jones RJ, Schreiber BMN, Roessler JA (1996) Kernel sink capacity in maize: genotypic and maternal regulation. Crop Sci 36:301–306

    Article  Google Scholar 

  30. Khaled AS, Vernoud V, Ingram GC, Perez P, Sarda X, Rogowsky PM (2005) Engrailed-ZmOCL1 fusions cause a transient reduction of kernel size in maize. Plant Mol Biol 58:123–139

    PubMed  CAS  Article  Google Scholar 

  31. Knapp SJ, Stroup WW, Ross WM (1985) Exact confidence intervals for heritability on a progeny mean basis. Crop Sci 25:192–194

    Article  Google Scholar 

  32. LeClere S, Schmelz EA, Chourey PS (2008) Cell wall invertase-deficient miniature1 kernels have altered phytohormone levels. Phytochemistry 69:692–699

    PubMed  CAS  Article  Google Scholar 

  33. Li Q, Li L, Yang X, Warburton ML, Bai G, Dai J, Li J, Yan J (2010a) Relationship, evolutionary fate and function of two maize co-orthologs of rice GW2 associated with kernel size and weight. BMC Plant Biol 10:143

    PubMed  PubMed Central  Article  Google Scholar 

  34. Li Q, Yang X, Bai G, Warburton ML, Mahuku G, Gore M, Dai J, Li J, Yan J (2010b) Cloning and characterization of a putative GS3 ortholog involved in maize kernel development. Theor Appl Genet 120:753–763

    PubMed  CAS  Article  Google Scholar 

  35. Li G, Wang D, Yang R, Logan K, Chen H, Zhang S, Skaggs MI, Lloyd A, Burnett WJ, Laurie JD, Hunter BG, Dannenhoffer JM, Larkins BA, Drews GN, Wang X, Yadegari R (2014) Temporal patterns of gene expression in developing maize endosperm identified through transcriptome sequencing. Proc Natl Acad Sci USA 111:7582–7587

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  36. Lid SE, Gruis D, Jung R, Lorentzen JA, Ananiev E, Chamberlin M, Niu X, Meeley R, Nichols S, Olsen OA (2002) The defective kernel 1 (dek1) gene required for aleurone cell development in the endosperm of maize grains encodes a membrane protein of the calpain gene superfamily. Proc Natl Acad Sci USA 99:5460–5465

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  37. Liu X, Fu J, Gu D, Liu W, Liu T, Peng Y, Wang J, Wang G (2008) Genome-wide analysis of gene expression profiles during the kernel development of maize (Zea mays L.). Genomics 91:378–387

    PubMed  CAS  Article  Google Scholar 

  38. Liu ZH, Ji HQ, Cui ZT, Wu X, Duan LJ, Feng XX, Tang JH (2010) QTL detected for grain-filling rate in maize using a RIL population. Mol Breed 27:25–36

    Article  Google Scholar 

  39. Maitz M, Santandrea G, Zhang Z, Lal S, Hannah LC, Salamini F, Thompson RD (2000) rgf1, a mutation reducing grain filling in maize through effects on basal endosperm and pedicel development. Plant J 23:29–42

    PubMed  CAS  Article  Google Scholar 

  40. Ober ES, Setter TL, Madison JT, Thompson JF, Shapiro PS (1991) Influence of water deficit on maize endosperm development: enzyme activities and RNA transcripts of starch and zein synthesis, abscisic acid, and cell division. Plant Physiol 97:154–164

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  41. Ohdan T, Francisco PB Jr, Sawada T, Hirose T, Terao T, Satoh H, Nakamura Y (2005) Expression profiling of genes involved in starch synthesis in sink and source organs of rice. J Exp Bot 56:3229–3244

    PubMed  CAS  Article  Google Scholar 

  42. Peng B, Li Y, Wang Y, Liu C, Liu Z, Tan W, Zhang Y, Wang D, Shi Y, Sun B, Song Y, Wang T, Li Y (2011) QTL analysis for yield components and kernel-related traits in maize across multi-environments. Theor Appl Genet 122:1305–1320

    PubMed  Article  Google Scholar 

  43. Phillips AR, Evans MM (2011) Analysis of stunter1, a maize mutant with reduced gametophyte size and maternal effects on seed development. Genetics 187:1085–1097

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  44. Prioul JL, Jeannette E, Reyss A, Gregory N, Giroux M, Hannah LC, Causse M (1994) Expression of ADP-glucose pyrophosphorylase in maize (Zea mays L.) grain and source leaf during grain filling. Plant Physiol 104:179–187

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  45. Revilla P, Butron A, Malvar RA, Ordas RA (1999) Relationship among kernel weight, early vigor, and growth in maize. Crop Sci 39:654–658

    Article  Google Scholar 

  46. Sabelli PA, Liu Y, Dante RA, Lizarraga LE, Nguyen HN, Brown SW, Klingler JP, Yu J, LaBrant E, Layton TM, Feldman M, Larkins BA (2013) Control of cell proliferation, endoreduplication, cell size, and cell death by the retinoblastoma-related pathway in maize endosperm. Proc Natl Acad Sci USA 110:E1827–E1836

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  47. SAS Institute (2009) SAS/STAT 9.2 user’s guide, 2nd edn, chapter 6th and 56th. SAS Institute Inc, Cary

  48. Schmidt RJ, Burr FA, Aukerman MJ, Burr B (1990) Maize regulatory gene opaque-2 encodes a protein with a “leucine-zipper” motif that binds to zein DNA. Proc Natl Acad Sci USA 87:46–50

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  49. Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, Liang C, Zhang J, Fulton L, Graves TA, Minx P, Reily AD, Courtney L, Kruchowski SS, Tomlinson C, Strong C, Delehaunty K, Fronick C, Courtney B, Rock SM, Belter E, Du F, Kim K, Abbott RM, Cotton M, Levy A, Marchetto P, Ochoa K, Jackson SM, Gillam B, Chen W, Yan L, Higginbotham J, Cardenas M, Waligorski J, Applebaum E, Phelps L, Falcone J, Kanchi K, Thane T, Scimone A, Thane N, Henke J, Wang T, Ruppert J, Shah N, Rotter K, Hodges J, Ingenthron E, Cordes M, Kohlberg S, Sgro J, Delgado B, Mead K, Chinwalla A, Leonard S, Crouse K, Collura K, Kudrna D, Currie J, He R, Angelova A, Rajasekar S, Mueller T, Lomeli R, Scara G, Ko A, Delaney K, Wissotski M, Lopez G, Campos D, Braidotti M, Ashley E, Golser W, Kim H, Lee S, Lin J, Dujmic Z, Kim W, Talag J, Zuccolo A, Fan C, Sebastian A, Kramer M, Spiegel L, Nascimento L, Zutavern T, Miller B, Ambroise C, Muller S, Spooner W, Narechania A, Ren L, Wei S, Kumari S, Faga B, Levy MJ, McMahan L, Van Buren P, Vaughn MW, Ying K, Yeh CT, Emrich SJ, Jia Y, Kalyanaraman A, Hsia AP, Barbazuk WB, Baucom RS, Brutnell TP, Carpita NC, Chaparro C, Chia JM, Deragon JM, Estill JC, Fu Y, Jeddeloh JA, Han Y, Lee H, Li P, Lisch DR, Liu S, Liu Z, Nagel DH, McCann MC, SanMiguel P, Myers AM, Nettleton D, Nguyen J, Penning BW, Ponnala L, Schneider KL, Schwartz DC, Sharma A, Soderlund C, Springer NM, Sun Q, Wang H, Waterman M, Westerman R, Wolfgruber TK, Yang L, Yu Y, Zhang L, Zhou S, Zhu Q, Bennetzen JL, Dawe RK, Jiang J, Jiang N, Presting GG, Wessler SR, Aluru S, Martienssen RA, Clifton SW, McCombie WR, Wing RA, Wilson RK (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115

    PubMed  CAS  Article  Google Scholar 

  50. Setter TL, Flannigan BA (2001) Water deficit inhibits cell division and expression of transcripts involved in cell proliferation and endoreduplication in maize endosperm. J Exp Bot 52:1401–1408

    PubMed  CAS  Article  Google Scholar 

  51. Shiferaw B, Prasanna BM, Hellin J, Banziger M (2011) Crops that feed the world 6. Past successes and future challenges to the role played by maize in global food security. Food Sec 3:307–327

    Article  Google Scholar 

  52. Takai T, Fukuta Y, Shiraiwa T, Horie T (2005) Time-related mapping of quantitative trait loci controlling grain-filling in rice (Oryza sativa L.). J Exp Bot 56:2107–2118

    PubMed  CAS  Article  Google Scholar 

  53. Tang J, Yan J, Ma X, Teng W, Wu W, Dai J, Dhillon BS, Melchinger AE, Li J (2010) Dissection of the genetic basis of heterosis in an elite maize hybrid by QTL mapping in an immortalized F2 population. Theor Appl Genet 120:333–340

    PubMed  Article  Google Scholar 

  54. Thevenot C, Simond-Cote E, Reyss A, Manicacci D, Trouverie J, Le Guilloux M, Ginhoux V, Sidicina F, Prioul JL (2005) QTLs for enzyme activities and soluble carbohydrates involved in starch accumulation during grain filling in maize. J Exp Bot 56:945–958

    PubMed  CAS  Article  Google Scholar 

  55. Wang GL, Kang MS, Moreno O (1999) Genetic analyses of grain-filling rate and duration in maize. Field Crops Res 61:211–222

    Article  Google Scholar 

  56. Wang E, Wang J, Zhu X, Hao W, Wang L, Li Q, Zhang L, He W, Lu B, Lin H, Ma H, Zhang G, He Z (2008) Control of rice grain-filling and yield by a gene with a potential signature of domestication. Nat Genet 40:1370–1374

    PubMed  CAS  Article  Google Scholar 

  57. Wang RX, Hai L, Zhang XY, You GX, Yan CS, Xiao SH (2009) QTL mapping for grain filling rate and yield-related traits in RILs of the Chinese winter wheat population Heshangmai × Yu8679. Theor Appl Genet 118:313–325

    PubMed  CAS  Article  Google Scholar 

  58. Westgate ME (1994) Water status and development of the maize endosperm and embryo during drought. Crop Sci 34:76–83

    Article  Google Scholar 

  59. Westgate ME, Boyer JS (1986) Water status of the developing grain of maize. Agron J 78:714–719

    Article  Google Scholar 

  60. Wu WR, Li WM, Tang DZ, Lu HR, Worland AJ (1999) Time-related mapping of quantitative trait loci underlying tiller number in rice. Genetics 151:297–303

    PubMed  CAS  PubMed Central  Google Scholar 

  61. Wu W, Zhou Y, Li W, Mao D, Chen Q (2002) Mapping of quantitative trait loci based on growth models. Theor Appl Genet 105:1043–1049

    PubMed  Article  Google Scholar 

  62. Young TE, Gallie DR (2000) Programmed cell death during endosperm development. Plant Mol Biol 44:283–301

    PubMed  CAS  Article  Google Scholar 

  63. Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468

    PubMed  CAS  PubMed Central  Google Scholar 

  64. Zhang Z, Liu Z, Cui Z, Hu Y, Wang B, Tang J (2013) Genetic analysis of grain filling rate using conditional QTL mapping in maize. PLoS One 8:e56344

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  65. Zhang Z, Liu Z, Hu Y, Li W, Fu Z, Ding D, Li H, Qiao M, Tang J (2014) QTL analysis of kernel-related traits in maize using an immortalized F2 population. PLoS One 9:e89645

    PubMed  PubMed Central  Article  Google Scholar 

  66. Zhu J (1995) Analysis of conditional genetic effects and variance components in developmental genetics. Genetics 141:1633–1639

    PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the National High Technology Research and Development Program of China (2012AA10A305) and the Science and Technology Support Program of China (2011BAD35B01).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Guiliang Tang or Jihua Tang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with animals performed by any of the authors.

Additional information

Z. Zhang and X. Wu contributed equally to this work.

Communicated by S. Hohmann.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Performance of the grain filling for Nongda108 and IF2 crosses belonging to different kernel weight classes. (A) Performance of the grain filling for Nongda108 during kernel development; (B-D) Performance of the grain filling for IF2 lines with large, medium and small kernel weight. These kernel samples all were showed with 100 kernels. The bar represents 1 cm (TIFF 3953 kb)

Supplementary material 2 (DOCX 35 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Wu, X., Shi, C. et al. Genetic dissection of the maize kernel development process via conditional QTL mapping for three developing kernel-related traits in an immortalized F2 population. Mol Genet Genomics 291, 437–454 (2016). https://doi.org/10.1007/s00438-015-1121-8

Download citation

Keywords

  • Maize (Zea mays L.)
  • Kernel development
  • Kernel density
  • Kernel weight
  • Kernel volume
  • QTL mapping