Molecular Genetics and Genomics

, Volume 291, Issue 1, pp 411–422

Structural features of conopeptide genes inferred from partial sequences of the Conus tribblei genome

  • Neda Barghi
  • Gisela P. Concepcion
  • Baldomero M. Olivera
  • Arturo O. Lluisma
Original Article

Abstract

The evolvability of venom components (in particular, the gene-encoded peptide toxins) in venomous species serves as an adaptive strategy allowing them to target new prey types or respond to changes in the prey field. The structure, organization, and expression of the venom peptide genes may provide insights into the molecular mechanisms that drive the evolution of such genes. Conus is a particularly interesting group given the high chemical diversity of their venom peptides, and the rapid evolution of the conopeptide-encoding genes. Conus genomes, however, are large and characterized by a high proportion of repetitive sequences. As a result, the structure and organization of conopeptide genes have remained poorly known. In this study, a survey of the genome of Conus tribblei was undertaken to address this gap. A partial assembly of C. tribblei genome was generated; the assembly, though consisting of a large number of fragments, accounted for 2160.5 Mb of sequence. A large number of repetitive genomic elements consisting of 642.6 Mb of retrotransposable elements, simple repeats, and novel interspersed repeats were observed. We characterized the structural organization and distribution of conotoxin genes in the genome. A significant number of conopeptide genes (estimated to be between 148 and 193) belonging to different superfamilies with complete or nearly complete exon regions were observed, ~60 % of which were expressed. The unexpressed conopeptide genes represent hidden but significant conotoxin diversity. The conotoxin genes also differed in the frequency and length of the introns. The interruption of exons by long introns in the conopeptide genes and the presence of repeats in the introns may indicate the importance of introns in facilitating recombination, evolution and diversification of conotoxins. These findings advance our understanding of the structural framework that promotes the gene-level molecular evolution of venom peptides.

Keywords

Conus tribblei genome Conopeptide gene structure Intron Repetitive elements 

Supplementary material

438_2015_1119_MOESM1_ESM.docx (1 mb)
Supplementary material 1 (DOCX 1035 kb)
438_2015_1119_MOESM2_ESM.docx (19 kb)
Supplementary material 2 (DOCX 19 kb)

References

  1. Agarwal AK, Giacchetti G, Lavery G, Nikkila H, Palermo M et al (2000) CA-repeat polymorphism in intron 1 of HSD11B2: effects on gene expression and salt sensitivity. Hypertension 36(2):187–194PubMedCrossRefGoogle Scholar
  2. Ahmed M, Liang P (2012) Transposable elements are a significant contributor to tandem repeats in the human genome. Comp Funct Genom ID 947089. doi:10.1155/2012/947089 Google Scholar
  3. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410PubMedCrossRefGoogle Scholar
  4. Barghi N, Concepcion GP, Olivera BM, Lluisma AO (2015a) High conopeptide diversity in Conus tribblei revealed through analysis of venom duct transcriptome using two high-throughput sequencing platforms. Mar Biotechnol 17(1):81–98PubMedCrossRefGoogle Scholar
  5. Barghi N, Concepcion GP, Olivera BM, Lluisma AO (2015b) Comparison of the venom peptides and their expression in closely related Conus species: insights into adaptive post-speciation evolution of Conus exogenomes. Genome Biol Evol 7(6):1797–1814PubMedPubMedCentralCrossRefGoogle Scholar
  6. Burset A, Seledtsov IA, Solovyev VV (2000) Analysis of canonical and non-canonical splice sites in mammalian genomes. Nucleic Acids Res 28(21):4364–4375PubMedPubMedCentralCrossRefGoogle Scholar
  7. Cao Z, Yu Y, Wu Y, Hao P, Di Z et al (2013) The genome of Mesobuthus martensii reveals a unique adaptation model of arthropods. Nat Commun 4:2602PubMedPubMedCentralGoogle Scholar
  8. Casewell NR, Wüster W, Vonk FJ, Harrison RA, Fry BG (2013) Complex cocktails: the evolutionary novelty of venoms. Trend Ecol Evol 28(4):219–229CrossRefGoogle Scholar
  9. Chang D, Duda TF (2012) Extensive and continuous duplication facilitates rapid evolution and diversification of gene families. Mol Biol Evol 29:2019–2029PubMedCrossRefGoogle Scholar
  10. Chang D, Duda TF (2014) Application of community phylogenetic approaches to understand gene expression: differential exploration of venom gene space in predatory marine gastropods. BMC Evol Biol 14:123PubMedPubMedCentralCrossRefGoogle Scholar
  11. Conticello SG, Gilad Y, Avidan N, Ben-Asher E, Levy Z, Fainzilber M (2001) Mechanisms for evolving hypervariability: the case of conopeptides. Mol Biol Evol 18:120–131PubMedCrossRefGoogle Scholar
  12. Deutsch M, Long M (1999) Intron-exon structures of eukaryotic model organisms. Nucleic Acids Res 27(15):3219–3228PubMedPubMedCentralCrossRefGoogle Scholar
  13. Duda TF (2008) Differentiation of venoms of predatory marine gastropods: divergence of orthologous toxin genes of closely related Conus species with different dietary specializations. J Mol Evol 67:315–321PubMedCrossRefGoogle Scholar
  14. Duda TF, Palumbi SR (1999) Molecular genetics of ecological diversification: duplication and rapid evolution of toxin genes of the venomous gastropod Conus. Proc Natl Acad Sci USA 96:6820–6823PubMedPubMedCentralCrossRefGoogle Scholar
  15. Duda TF, Palumbi SR (2000) Evolutionary diversification of multigene families: allelic selection of toxins in predatory cone snails. Mol Biol Evol 17:1286–1293PubMedCrossRefGoogle Scholar
  16. Dutertre S, Jin A, Kaas Q, Jones A, Alewood PF, Lewis RJ (2013) Deep venomics reveals the mechanism for expanded peptide diversity in cone snail venom. Mol Cell Proteom 12:312–329CrossRefGoogle Scholar
  17. Dutertre S, Jin A, Vetter I, Hamilton B, Sunagar K et al (2014) Evolution of separate predation- and defence-evoked venoms in carnivorous cone snails. Nat Commun 5:3521PubMedPubMedCentralGoogle Scholar
  18. Elliger CA, Richmond TA, Lenaric ZN, Pierce NT, Sweedler JV, Gilly WF (2011) Diversity of conotoxin types from Conus californicus reflects a diversity of prey types and a novel evolutionary history. Toxicon 57:311–322PubMedPubMedCentralCrossRefGoogle Scholar
  19. Espiritu DJ, Watkins M, Dia-Monje V, Cartier GE, Cruz LJ, Olivera BM (2001) Venomous cone snails: molecular phylogeny and the generation of toxin diversity. Toxicon 39:1899–1916PubMedCrossRefGoogle Scholar
  20. Gebhardt F, Zänker KS, Brandt B (1999) Modulation of epidermal growth factor receptor gene transcription by a polymorphic dinucleotide repeat in intron 1. J Biol Chem 274(19):13176–13180PubMedCrossRefGoogle Scholar
  21. Gilly WF, Richmond TA, Duda TF, Elliger C, Lebaric Z, Schulz J, Bingham JP, Sweedler JV (2011) A diverse family of novel peptide toxins from an unusual cone snail, Conus californicus. J Exp Biol 214:147–161PubMedPubMedCentralCrossRefGoogle Scholar
  22. Hinegardner R (1974) Cellular DNA content of the Mollusca. Comp Biochem Physiol 47A:447–460CrossRefGoogle Scholar
  23. Hong X, Scofield DG, Lynch M (2006) Intron size, abundance, and distribution within untranslated regions of genes. Mol Biol Evol 23(12):2392–2404PubMedCrossRefGoogle Scholar
  24. Hu H, Bandyopadhyay PK, Olivera BM, Yandell M (2011) Characterization of the Conus bullatus genome and its venom-duct transcriptome. BMC Genom 12:60CrossRefGoogle Scholar
  25. Jin A, Dutertre S, Kaas Q, Lavergne V, Kubala P, Lewis RJ, Alewood PF (2013) Transcriptomic messiness in the venom duct of Conus miles contributes to conotoxin diversity. Mol Cell Proteom 12(12):3824–3833CrossRefGoogle Scholar
  26. Jurka J, Kapitonov VV, Pavlicek A, Klonowski P, Kohany O, Walichiewicz J (2005) Repbase update, a database of eukaryotic repetitive elements. Cytogenet Genome Res 110:462–467PubMedCrossRefGoogle Scholar
  27. Kaas Q, Yu R, Jin A, Dutertre S, Craik DJ (2012) ConoServer: updated content, knowledge, and discovery tools in the conopeptide database. Nucleic Acids Res 40:D325–D330PubMedPubMedCentralCrossRefGoogle Scholar
  28. Kidwell MG, Lisch DR (2001) Perspective: transposable elements, parasitic DNA, and genome evolution. Evolution 55(1):1–24PubMedCrossRefGoogle Scholar
  29. Lavergne V, Dutertre S, Jin A, Lewis RJ, Taft RJ, Alewood PF (2013) Systematic interrogation of the Conus marmoreus venom duct transcriptome with ConoSorter reveals 158 novel conotoxins and 13 new gene superfamilies. BMC Genom 14:708CrossRefGoogle Scholar
  30. Luo R, Liu B, Xie Y, Li Z, Huang W et al (2012) SOAPdenovo2: an empirically improved memory-efficient short-read de Novo assembler. GigaScience 1(18):1–6Google Scholar
  31. Majewski J, Ott J (2002) Distribution and characterization of regulatory elements in the human genome. Genome Res 12:1827–1836PubMedPubMedCentralCrossRefGoogle Scholar
  32. Nei M, Rooney AP (2005) Concerted and Birth-and-death evolution of multigene families. Annu Rev Genet 39:121–152PubMedPubMedCentralCrossRefGoogle Scholar
  33. Olivera BM (2006) Conus peptides: biodiversity-based discovery and exogenomics. J Biol Chem 281:31173–31177PubMedCrossRefGoogle Scholar
  34. Olivera BM, Teichert RW (2007) Diversity of the neurotoxin Conus peptides, a model for concerted pharmacological discovery. Mol Interv 7:251–260PubMedCrossRefGoogle Scholar
  35. Olivera BM, Walker C, Cartier GE, Hooper D, Santos AD, Schoenfeld R, Shetty R, Watkins M, Bandyopadhyay P, Hillyard DR (1999) Speciation of cone snails and interspecific hyperdivergence of their venom peptides. Ann N Y Acad Sci 870:223–237PubMedCrossRefGoogle Scholar
  36. Pearson WR, Wood T, Zhang Z, Miller W (1997) Comparison of DNA sequences with protein sequences. Genomics 46:24–36PubMedCrossRefGoogle Scholar
  37. Puillandre N, Watkins M, Olivera BM (2010) Evolution of Conus peptide genes: duplication and positive selection in the A-superfamily. J Mol Evol 70:190–202PubMedPubMedCentralCrossRefGoogle Scholar
  38. Puillandre N, Bouchet P, Duda TF, Kauferstein S, Kohn AJ, Olivera BM, Watkins M, Meyer C (2014) Molecular phylogeny and evolution of the cone snails (Gastropoda, Conoidea). Mol Phylogenet Evol 78:290–303PubMedCrossRefGoogle Scholar
  39. Rogozin IB, Carmel L, Csuros M, Koonin E (2012) Origin and evolution of spliceosomal introns. Biol Direct 7:11PubMedPubMedCentralCrossRefGoogle Scholar
  40. Sanggaard KW, Bechsgaard JS, Fang X, Duan J, Dyrlund TF et al (2014) Spider genomes provide insight into composition and evolution of venom and silk. Nat Commun 5:3765PubMedPubMedCentralGoogle Scholar
  41. Senapathy P, Sharpiro MB, Harris NL (1990) Splice junctions, branch point sites and exons: sequence statistics, identification and applications to genome projects. Methods Enzymol 183:252–278PubMedCrossRefGoogle Scholar
  42. Simpson JT, Durbin R (2012) Efficient de novo assembly of large genomes using compressed data structures. Genome Res 22(3):549–556PubMedPubMedCentralCrossRefGoogle Scholar
  43. Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJM, Birol İ (2009) ABySS: a parallel assembler for short read sequence data. Genome Res 19(6):1117–1123PubMedPubMedCentralCrossRefGoogle Scholar
  44. Slater GSC, Birney E (2005) Automated generation of heuristics for biological sequence Comparison. BMC Bioinformatic 6:31CrossRefGoogle Scholar
  45. Smit AFA, Hubley R (2008–2015) RepeatModeler Open-1.0. http://www.repeatmasker.org. Accessed 23 Sept 2015
  46. Smit AFA, Hubley R, Green P (2013–2015) RepeatMasker Open-4.0. http://www.repeatmasker.org. Accessed 23 Sept 2015
  47. Stockwell T, Baden-Tillson H, Favreau P, Mebs D, Ducancel F, Stöcklin R (2010) Sequencing the genome of Conus consors: preliminary results. In: Barbier J, Benoit E, Marchot P, Mattéi C, Servent D (eds) Advances and new technologies in toxinology. SFET Editions, Gif sur Yvette, France, pp 11–16. http://www.sfet.asso.fr. ISSN 1760-6004. Accessed 23 Sept 2015
  48. Thanaraj TA, Clark F (2001) Human GC-AG alternative intron isoforms with weak donor sites show enhanced consensus at acceptor exon positions. Nucleic Acids Res 29(12):2581–2593PubMedPubMedCentralCrossRefGoogle Scholar
  49. The UniProt Consortium (2015) UniProt: a hub for protein information. Nucleic Acids Res 43:D204–D212PubMedCentralCrossRefGoogle Scholar
  50. Vonk FJ, Casewell NR, Henkel CV, Heimberg AM, Jansen HJ et al (2013) The king cobra genome reveals dynamic gene evolution and adaptation in the snake venom system. Proc Natl Acad Sci USA 110(51):20651–20656PubMedPubMedCentralCrossRefGoogle Scholar
  51. WarrenWC Hillier LW, Marshall Graves JA, Birney E et al (2008) Genome analysis of the platypus reveals unique signatures of evolution. Nature 453(8):175–184CrossRefGoogle Scholar
  52. Watkins M, Hillyard DR, Olivera BM (2006) Genes expressed in a turrid venom duct: divergence and similarity to conotoxins. J Mol Evol 62(3):247–256PubMedCrossRefGoogle Scholar
  53. Wong ESW, Papenfuss AT, Whittington CM, Warren WC, Belov K (2012) A limited role for gene duplications in the evolution of platypus venom. Mol Biol Evol 29(1):167–177PubMedPubMedCentralCrossRefGoogle Scholar
  54. Wu Y, Wang L, Zhou M, You Y, Zhu X, Qiang Y, Qin M, Luo S, Ren Z, Xu A (2013) Molecular evolution and diversity of Conus peptide toxins, as revealed by gene structure and intron sequence analyses. PlosOne 8(12):e82495CrossRefGoogle Scholar
  55. Yuan D, Han Y, Wang C, Chi C (2007) From the identification of gene organization of α conotoxins to the cloning of novel toxins. Toxicon 49:1135–1149PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Neda Barghi
    • 1
    • 4
  • Gisela P. Concepcion
    • 1
    • 2
  • Baldomero M. Olivera
    • 3
  • Arturo O. Lluisma
    • 1
    • 2
  1. 1.Marine Science InstituteUniversity of the Philippines-DilimanQuezon CityPhilippines
  2. 2.Philippine Genome CenterUniversity of the PhilippinesQuezon CityPhilippines
  3. 3.Department of BiologyUniversity of UtahSalt Lake CityUSA
  4. 4.Institut für Populationsgenetik, Vetmeduni ViennaViennaAustria

Personalised recommendations