Skip to main content

Advertisement

Log in

Functional characterization and molecular mechanism exploration of three granulin epithelin precursor splice variants in biomineralization of the pearl oyster Pinctada fucata

  • Original Article
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

The granulin/epithelin precursor (GEP) encodes a glycoprotein precursor which exhibits pleiotropic tissue growth factor activity with multiple functions. Here, GEP was isolated and its role in the shell biomineralization process of the pearl oyster Pinctada fucata was investigated. Three forms of GEP mRNA were isolated from the pearl oyster (designated PfGEP-1, PfGEP-2 and PfGEP-3). Genomic DNA flanking the splicing region of the PfGEP variants was sequenced and it was found that PfGEP-2 splices out Exon 4, whereas PfGEP-3 splices out Exon 3 compared to PfGEP-1. PfGEP-1 (1505 amino acids) consists of 18 granulin domains, whereas PfGEP-2 (1459 amino acids) and PfGEP-3 (1471 amino acids) consist of 17.5 granulin domains, respectively. Analyses of PfGEP-1 and PfGEP-3 mRNA showed differential patterns in the tissues and developmental stages. Western blotting results showed that the three splice variants can translate to proteins in HEK293T cells. A knockdown experiment using PfGEP dsRNA showed decreased PfGEP-1/PfGEP-3 and PfMSX mRNA, and irregular crystallization of the nacreous layer using scanning electron microscopy. In luciferase assays, co-transfection of PfGEP-1 could activate as well as repress luciferase expression of the reporter plasmid driven by the PfMSX promoter, whereas PfGEP-3 stimulated the expression, elucidating the molecular mechanisms involved in the correlation between PfGEP and PfMSX. These results suggested that GEP variants might function differently during the biomineralization process, which provides new knowledge on the mechanism regulating nacre formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Baba T, Hoff HB, Nemoto H, Lee H, Orth J, Arai Y, Gerton GL (1993) Acrogranin, an acrosomal cysteine-rich glycoprotein, is the precursor of the growth-modulating peptides, granulins, and epithelins, and is expressed in somatic as well as male germ cells. Mol Reprod Dev 34:233–243

    Article  PubMed  CAS  Google Scholar 

  • Belcourt DR, Lazure C, Bennett H (1993) Isolation and primary structure of the three major forms of granulin-like peptides from hematopoietic tissues of a teleost fish (Cyprinus carpio). J Biol Chem 268:9230–9237

    PubMed  CAS  Google Scholar 

  • Bensoussan-Trigano V, Lallemand Y, Saint Cloment C, Robert B (2011) Msx1 and Msx2 in limb mesenchyme modulate digit number and identity. Dev Dynam 240:1190–1202

    Article  CAS  Google Scholar 

  • Bhandari V, Palfree R, Bateman A (1992) Isolation and sequence of the granulin precursor cDNA from human bone marrow reveals tandem cysteine-rich granulin domains. Proc Natl Acad Sci USA 89:1715–1719

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Cao Z, Jiang B, Xie Y, Liu C, Feng JQ (2010) GEP, a local growth factor, is critical for odontogenesis and amelogenesis. Int J Biol Sci 6:719–729

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Contreras-Moreira B, Bates PA (2002) Domain fishing: a first step in protein comparative modelling. Bioinformatics 18:1141–1142

    Article  PubMed  CAS  Google Scholar 

  • Feng JQ, Guo FJ, Jiang BC, Zhang Y, Frenkel S, Wang DW, Tang W, Xie Y, Liu CJ (2010) Granulin epithelin precursor: a bone morphogenic protein 2-inducible growth factor that activates Erk1/2 signaling and JunB transcription factor in chondrogenesis. FASEB J 24:1879–1892

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gong N, Shangguan J, Liu X, Yan Z, Ma Z, Xie L, Zhang R (2008) Immunolocalization of matrix proteins in nacre lamellae and their in vivo effects on aragonitic tablet growth. J Struct Biol 164:33–40

    Article  PubMed  CAS  Google Scholar 

  • Gordon J, Carriker M (1980) Sclerotized protein in the shell matrix of a bivalve mollusc. Mar Biol 57:251–260

    Article  CAS  Google Scholar 

  • Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-Pdb viewer: an environment for comparative protein modeling. Electrophoresis 18:2714–2723

    Article  PubMed  CAS  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98

  • Hanington PC (2006) A Novel Hematopoietic Granulin Induces Proliferation of Goldfish (Carassius auratus L.) Macrophages. J Biol Chem 281:9963–9970

    Article  PubMed  CAS  Google Scholar 

  • Hanington PC, Brennan LJ, Belosevic M, Andrew Keddie B (2008) Molecular and functional characterization of granulin-like molecules of insects. Insect Biochem Mol Biol 38:596–603

    Article  PubMed  CAS  Google Scholar 

  • He Z, Bateman A (2003) Progranulin (granulin-epithelin precursor, PC-cell-derived growth factor, acrogranin) mediates tissue repair and tumorigenesis. J Mol Med 81:600–612

    Article  PubMed  CAS  Google Scholar 

  • He Z, Ong CH, Halper J, Bateman A (2003) Progranulin is a mediator of the wound response. Nat Med 9:225–229

    Article  PubMed  CAS  Google Scholar 

  • Hollnagel A, Oehlmann V, Heymer J, Rüther U, Nordheim A (1999) Id genes are direct targets of bone morphogenetic protein induction in embryonic stem cells. J Biol Chem 274:19838–19845

    Article  PubMed  CAS  Google Scholar 

  • Hrabal R, Chen Z, James S, Bennett H, Ni F (1996) The hairpin stack fold, a novel protein architecture for a new family of protein growth factors. Nat Struct Biol 3:747–752

    Article  PubMed  CAS  Google Scholar 

  • Huang X-D, Zhao M, Liu W-G, Guan Y-Y, Shi Y, Wang Q, Wu S-Z, He M-X (2012) Gigabase-Scale Transcriptome Analysis on Four Species of Pearl Oysters. Mar Biotechnol 15:253–264

    Article  PubMed  Google Scholar 

  • Ishimura A, Maeda R, Takeda M, Kikkawa M, Daar IO, Maéno M (2000) Involvement of BMP-4/msx-1 and FGF pathways in neural induction in the Xenopus embryo. Dev Growth Differ 42:307–316

    Article  PubMed  CAS  Google Scholar 

  • Jin Hong S, Won Kang K (1999) Purification of granulin-like polypeptide from the blood-sucking leech, Hirudo nipponia. Protein Expres Purif 16:340–346

    Article  CAS  Google Scholar 

  • Jüsten H-P, Grünewald E, Totzke G, Gouni-Berthold I, Sachinidis A, Wessinghage D, Vetter H, Schulze-Osthoff K, Ko Y (2000) Differential gene expression in synovium of rheumatoid arthritis and osteoarthritis. Mol Cell Biol Res Commun 3:165–172

    Article  PubMed  Google Scholar 

  • Kumar S, Nei M, Dudley J, Tamura K (2008) MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 9:299–306

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lallemand Y, Nicola M-A, Ramos C, Bach A, Saint Cloment C, Robert B (2005) Analysis of Msx1; Msx2 double mutants reveals multiple roles for Msx genes in limb development. Development 132:3003–3014

    Article  PubMed  CAS  Google Scholar 

  • Liang J, Zhu L, Meng L, Chen D, Bian Z (2012) Novel nonsense mutation in MSX1 causes tooth agenesis with cleft lip in a Chinese family. Eur J Oral Sci 120:278–282

    PubMed  CAS  Google Scholar 

  • Liu J-P, Baker J, Perkins AS, Robertson EJ, Efstratiadis A (1993) Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1) and type 1 IGF receptor (Igf1r). Cell 75:59–72

    PubMed  CAS  Google Scholar 

  • Marcotte EM, Pellegrini M, Yeates TO, Eisenberg D (1999) A census of protein repeats. J Mol Biol 293:151–160

    Article  PubMed  CAS  Google Scholar 

  • Miyashita T, Takagi R, Okushima M, Nakano S, Miyamoto H, Nishikawa E, Matsushiro A (2000) Complementary DNA cloning and characterization of pearlin, a new class of matrix protein in the nacreous layer of oyster pearls. Mar Biotechnol 2:409–418

    PubMed  CAS  Google Scholar 

  • Nam B-H, Park E-M, Kim Y-O, Kong HJ, Kim W-J, Kang J-H, Ji Y-J, Lee S-J, Choi T-J (2009) Identification of two differentially expressed forms of progranulin mRNA in the teleost fish Paralichthys olivaceus. Fish Shellfish Immunol 26:177–182

    Article  PubMed  CAS  Google Scholar 

  • Nara K, Matsue H, Naraoka T (2004) Granulin-like peptide in the mid-gut gland of the bivalve mollusk, Patinopecten yessoensis. BBA-Gen Subjects 1675:147–154

    Article  CAS  Google Scholar 

  • Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785–786

    Article  PubMed  CAS  Google Scholar 

  • Saadi I, Das P, Zhao M, Raj L, Ruspita I, Xia Y, Papaioannou VE, Bei M (2013) Msx1 and Tbx2 antagonistically regulate Bmp4 expression during the bud-to-cap stage transition in tooth development. Development 140:2697–2702

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Samata T, Hayashi N, Kono M, Hasegawa K, Horita C, Akera S (1999) A new matrix protein family related to the nacreous layer formation of Pinctada fucata. FEBS Lett 462:225–229

    Article  PubMed  CAS  Google Scholar 

  • Schultz J, Milpetz F, Bork P, Ponting CP (1998) SMART, a simple modular architecture research tool: identification of signaling domains. Proc Natl Acad Sci USA 95:5857–5864

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Shen Z, Jacobs-Lorena M (1999) Evolution of chitin-binding proteins in invertebrates. J Mol Evol 48:341–347

    Article  PubMed  CAS  Google Scholar 

  • Shen X, Belcher AM, Hansma PK, Stucky GD, Morse DE (1997) Molecular cloning and characterization of lustrin A, a matrix protein from shell and pearl nacre of Haliotis rufescens. J Biol Chem 272:32472–32481

    Article  PubMed  CAS  Google Scholar 

  • Smout MJ, Laha T, Mulvenna J, Sripa B, Suttiprapa S, Jones A, Brindley PJ, Loukas A (2009) A granulin-like growth factor secreted by the carcinogenic liver fluke, Opisthorchis viverrini, promotes proliferation of host cells. PLoS Pathog 5:e1000611

    Article  PubMed  PubMed Central  Google Scholar 

  • Srivastava M, Begovic E, Chapman J, Putnam NH, Hellsten U, Kawashima T, Kuo A, Mitros T, Salamov A, Carpenter ML (2008) The Trichoplax genome and the nature of placozoans. Nature 454:955–960

    Article  PubMed  CAS  Google Scholar 

  • Srivastava M, Simakov O, Chapman J, Fahey B, Gauthier ME, Mitros T, Richards GS, Conaco C, Dacre M, Hellsten U (2010) The Amphimedon queenslandica genome and the evolution of animal complexity. Nature 466:720–726

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sun X, Gulyas M, Hjerpe A (2004) Mesothelial differentiation as reflected by differential gene expression. Am J Resp Cell Mol 30:510–518

    Article  CAS  Google Scholar 

  • Suzuki M, Nishiahara M (2002) Granulin precursor gene: a sex steroid-inducible gene involved in sexual differentiation of the rat brain. Mol Genet Metab 75:31–37

    Article  PubMed  CAS  Google Scholar 

  • Suzuki M, Saruwatari K, Kogure T, Yamamoto Y, Nishimura T, Kato T, Nagasawa H (2009) An acidic matrix protein, Pif, is a key macromolecule for nacre formation. Science 325:1388–1390

    Article  PubMed  CAS  Google Scholar 

  • Tolkatchev D, Malik S, Vinogradova A, Wang P, Chen Z, Xu P, Bennett HP, Bateman A, Ni F (2008) Structure dissection of human progranulin identifies well-folded granulin/epithelin modules with unique functional activities. Protein Sci 17:711–724

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Westbroek P, Marin F (1998) A marriage of bone and nacre. Nature 392:861–862

    Article  PubMed  CAS  Google Scholar 

  • Zhao Y-P, Tian Q-Y, Frenkel S, Liu C-J (2013a) The promotion of bone healing by progranulin, a downstream molecule of BMP-2, through interacting with TNF/TNFR signaling. Biomaterials 34:6412–6421

  • Zhao J, Wei J, Liu M, Xiao L, Wu N, Liu G, Huang H, Zhang Y, Zheng L, Lin X (2013b) Cloning, characterization and expression of a cDNA encoding a granulin-like polypeptide in Ciona savignyi. Biochimie 95:1611–1619

    Article  PubMed  CAS  Google Scholar 

  • Zhao M, He M, Huang X, Wang Q (2014) A Homeodomain Transcription Factor Gene, PfMSX, Activates Expression of Pif Gene in the Pearl Oyster Pinctada fucata. PLoS ONE 9:e103830

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu J, Nathan C, Jin W, Sim D, Ashcroft GS, Wahl SM, Lacomis L, Erdjument-Bromage H, Tempst P, Wright CD (2002) Conversion of proepithelin to epithelins: roles of SLPI and elastase in host defense and wound repair. Cell 111:867–878

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (41376159), the National Science and Technology Program of China (2012AA10A410).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mi Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics statement

No specific permits were required for the field studies described, and the field studies did not involve endangered or protected species.

Additional information

Communicated by S. Hohmann.

Electronic supplementary material

Below is the link to the electronic supplementary material.

438_2015_1118_MOESM1_ESM.tif

Fig. S1. Full cDNA sequence and predicted amino acid sequence of PfGEP variants. (a) Full cDNA sequence and predicted amino acid sequence of PfGEP-1. The putative signal peptide is shown in bold. Granulin domains are shaded in gray. The asterisk marks the stop codon at the end of the open reading frame. The predicted O-glycosylation sites (amino acid residues 76, 109, 272, 410 and 701) are marked by an ellipse. Granulin domain 2 of PfGEP-1 is boxed in the black line and separated into two parts by a gray line. (b) cDNA sequence and predicted amino acid sequence of granulin domain 2 of PfGEP-2. The granulin domain 2 of PfGEP-2 is boxed and is the upper half of PfGEP-1′s granulin domain 2. (c) cDNA sequence and predicted amino acid sequence of granulin domain 2 of PfGEP-3: The cDNA sequence and predicted amino acid sequence which is boxed is the granulin domain 2 of PfGEP-3 and is the lower half of PfGEP-1′s granulin domain 2. Other than the granulin domain 2, PfGEP-1, -2 and -3 share the same sequence (TIFF 1307 kb)

Fig. S2. Schematic diagram of QPCR primers for PfGEP-1, PfGEP-2 and PfGEP-3 (TIFF 1095 kb)

438_2015_1118_MOESM3_ESM.tif

Fig. S3. Phylogenetic analysis of the PfGEP-1,-2 and -3 amino acid sequences with other known GEP sequences. The branches were validated by bootstrap analysis from 1000 replications, which were represented by percentage in branch nodes (TIFF 3753 kb)

Supplementary material 4 (DOCX 16 kb)

Supplementary material 5 (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, M., He, M., Huang, X. et al. Functional characterization and molecular mechanism exploration of three granulin epithelin precursor splice variants in biomineralization of the pearl oyster Pinctada fucata . Mol Genet Genomics 291, 399–409 (2016). https://doi.org/10.1007/s00438-015-1118-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-015-1118-3

Keywords

Navigation