Skip to main content
Log in

Characterization of the temperate phage vB_RleM_PPF1 and its site-specific integration into the Rhizobium leguminosarum F1 genome

  • Original Article
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Bacteriophages may play an important role in regulating population size and diversity of the root nodule symbiont Rhizobium leguminosarum, as well as participating in horizontal gene transfer. Although phages that infect this species have been isolated in the past, our knowledge of their molecular biology, and especially of genome composition, is extremely limited, and this lack of information impacts on the ability to assess phage population dynamics and limits potential agricultural applications of rhizobiophages. To help address this deficit in available sequence and biological information, the complete genome sequence of the Myoviridae temperate phage PPF1 that infects R. leguminosarum biovar viciae strain F1 was determined. The genome is 54,506 bp in length with an average G+C content of 61.9 %. The genome contains 94 putative open reading frames (ORFs) and 74.5 % of these predicted ORFs share homology at the protein level with previously reported sequences in the database. However, putative functions could only be assigned to 25.5 % (24 ORFs) of the predicted genes. PPF1 was capable of efficiently lysogenizing its rhizobial host R. leguminosarum F1. The site-specific recombination system of the phage targets an integration site that lies within a putative tRNA-Pro (CGG) gene in R. leguminosarum F1. Upon integration, the phage is capable of restoring the disrupted tRNA gene, owing to the 50 bp homologous sequence (att core region) it shares with its rhizobial host genome. Phage PPF1 is the first temperate phage infecting members of the genus Rhizobium for which a complete genome sequence, as well as other biological data such as the integration site, is available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abedon S (2008) Bacteriophage ecology: population growth, evolution, and impact of bacterial viruses. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Adams MH (1959) Bacteriophages. Interscience Publishers Inc, New York

    Google Scholar 

  • Aksyuk AA, Kurochkina LP, Fokine A, Forouhar F, Mesyanzhinov VV, Tong L, Rossmann MG (2011) Structural conservation of the Myoviridae phage tail sheath protein fold. Structure 19:1885–1894

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl Acids Res 25:3389–3402

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Aziz RK, Bartels D, Best AA et al (2008) The RAST server: rapid annotations using subsystems technology. BMC Genomics 9:75

    Article  PubMed  PubMed Central  Google Scholar 

  • Baldani JI, Weaver RW, Hynes MF, Eardly BD (1992) Utilization of carbon substrates, electrophoretic enzyme patterns, and symbiotic performance of plasmid-cured clover rhizobia. Appl Environ Microb 58:2308–2314

    CAS  Google Scholar 

  • Beringer JE (1974) R factor transfer in Rhizobium leguminosarum. J Gen Microbiol 84(Sep):188–198

    PubMed  CAS  Google Scholar 

  • Blaha B, Semsey S, Ferenczi S, Csiszovszki Z, Papp PP, Orosz L (2004) A proline tRNA(CGG) gene encompassing the attachment site of temperate phage 16-3 is functional and convertible to suppressor tRNA. Mol Microbiol 54:742–754

    Article  PubMed  CAS  Google Scholar 

  • Borysowski J, Weber-Dabrowska B, Górski A (2006) Bacteriophage endolysins as a novel class of antibacterial agents. Exp Biol Med 231:366–377

    CAS  Google Scholar 

  • Breüner A, Brønsted L, Hammer K (2001) Resolvase-like recombination performed by TP901-1 integrase. Microbiology 147:2051–2063

    Article  PubMed  Google Scholar 

  • Brewer TE, Stroupe ME, Jones KM (2014) The genome, proteome and phylogenetic analysis of Sinorhizobium meliloti phage PhiM12, the founder of a new group of T4-superfamily phages. Virology 450–451:84–97

    Article  PubMed  Google Scholar 

  • Brewin NJ, Wood EA, Johnston AWB, Dibb NJ, Hombrecher G (1982) Recombinant nodulation plasmids in Rhizobium leguminosarum. J Gen Microbiol 128:1817–1827

    Google Scholar 

  • Brüssow H, Canchaya C, Hardt WD (2004) Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol Mol Biol Rev 68:560–602

    Article  PubMed  PubMed Central  Google Scholar 

  • Canchaya C, Proux C, Fournous G, Bruttin A, Brüssow H (2003) Prophage genomics. Microbiol Mol Biol Rev 67:238–275

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Canchaya C, Fournous G, Brüssow H (2004) The impact of prophages on bacterial chromosomes. Mol Microbiol 53:9–18

    Article  PubMed  CAS  Google Scholar 

  • Casjens SR (2011) The DNA-packaging nanomotor of tailed bacteriophages. Nat Rev Microbiol 9:647–657

    Article  PubMed  CAS  Google Scholar 

  • Darling AC, Mau B, Blattner FR, Perna NT (2004) Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 14:1394–1403

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Deák L, Lukács R, Buzás Z, Pálvölgyi A, Papp PP, Orosz L, Putnoky P (2010) Identification of tail genes in the temperate phage 16-3 of Sinorhizobium meliloti. J Bacteriol 192:1617–1623

    Article  PubMed  PubMed Central  Google Scholar 

  • Dorgai L, Polner G, Jónás E, Garamszegi N, Ascher Z, Páy A, Dallmann G, Orosz L (1983) The detailed physical map of the temperate phage 16-3 of Rhizobium meliloti 41. Mol Gen Genet 191:430–433

    Article  PubMed  CAS  Google Scholar 

  • Dziewit L, Oscik K, Barotsik D, Radlinksa M (2014) Molecular characterization of a novel temperate Sinorhizobium bacteriophage, ΦLM21, encoding DNA methyltransferase with CcrM-like specificity. J Virol 88:13111–13124

    Article  PubMed  PubMed Central  Google Scholar 

  • Ferenczi S, Ganyu A, Blaha B, Semsey S, Nagy T, Csiszovszki Z, Orosz L, Papp PP (2004) Integrative plasmid vector for constructing single-copy reporter systems to study gene regulation in Rhizobium meliloti and related species. Plasmid 52:57–62

    Article  PubMed  CAS  Google Scholar 

  • Freitas-Vieira A, Anes E, Moniz-Perreira J (1998) The site-specific recombination locus of mycobacteriophage Ms6 determines DNA integration at the tRNA(Ala) gene of Mycobacterium spp. Microbiology 144:3397–3406

    Article  PubMed  CAS  Google Scholar 

  • Ganyu A, Csisovszki Z, Ponyi T, Kern A, Buzás Z, Orosz L, Papp P (2005) Identification of cohesive ends and genes encoding the terminase of phage 16-3. J Bacteriol 187:2526–2531

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Guo PX, Erickson S, Anderson D (1987) A small viral-RNA Is required for in vitro packaging of bacteriophage-Phi-29 DNA. Science 236:690–694

    Article  PubMed  CAS  Google Scholar 

  • Halmillawewa AP, Restrepo-Córdoba M, Yost CK, Hynes MF (2015) Genomic and phenotypic characterization of Rhizobium gallicum phage vB_RglS_P106B. Microbiology 161:611–620

    Article  PubMed  Google Scholar 

  • Hashem FM, Angle JS (1988) Rhizobiophage effects on Bradyrhizobium japonicum, nodulation and soybean growth. Soil Biol Biochem 20:69–73

    Article  Google Scholar 

  • Hauser MA, Scocca JJ (1992) Site-specific integration of the Haemophilus influenzae bacteriophage-Hp1—location of the boundaries of the phage attachment site. J Bacteriol 174:6674–6677

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hermesz E, Olasz F, Dorgai L, Orosz L (1992) Stable incorporation of genetic material into the chromosome of Rhizobium meliloti 41—construction of an integrative vector system. Gene 119:9–15

    Article  PubMed  CAS  Google Scholar 

  • Hirsch PR (1979) Plasmid-determined bacteriocin production by Rhizobium leguminosarum. J Gen Microbiol 113:219–228

    Article  CAS  Google Scholar 

  • Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ (2010) Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform 11:119

    Article  Google Scholar 

  • Josey DP, Beynon JL, Johnston AWB, Beringer JE (1979) Strain identification in Rhizobium using intrinsic antibiotic resistance. J Appl Bacteriol 46:343–350

    Article  Google Scholar 

  • Kondorosi E, Gyuris J, Schmidt J, John M, Duda E, Hoffmann B, Schell J, Kondorosi A (1989) Positive and negative control of nod gene expression in Rhizobium meliloti is required for optimal nodulation. EMBO J 8:1331–1340

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lamb JW, Hombrecher G, Johnston AWB (1982) Plasmid determined nodulation and nitrogen fixation abilities in Rhizobium phaseoli. Mol Gen Genet 186:449–452

    Article  CAS  Google Scholar 

  • Larkin MA, Blackshields G, Brown NL, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  PubMed  CAS  Google Scholar 

  • Laslett D, Canback B (2004) ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucl Acids Res 32:11–16

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lech K, Reddy KJ, Sherman LA (2001) Preparing lambda DNA from phage lysates. Current Protocols in Molecular Biology. Wiley, New York

    Google Scholar 

  • Lee MH, Pascopella L, Jacobs WR, Hatfull GF (1991) Site-specific integration of Mycobacteriophage-L5: integration-proficient vectors for Mycobacterium smegmatis, Mycobacterium tuberculosis, and bacille Calmette–Guérin. Proc Natl Acad Sci USA 88:3111–3115

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Leiman PG, Chipman PR, Kostyuchenko VA, Mesyanzhinov VV, Rossmann MG (2004) Three-dimensional rearrangement of proteins in the tail of bacteriophage T4 on infection of its host. Cell 118:419–429

    Article  PubMed  CAS  Google Scholar 

  • Lillehaug D, Birkeland N-K (1993) Characterization of genetic elements required for site specific integration of the temperate Lactococcal bacteriophage ΦLC3 and construction of integration-negative ΦLC3 mutants. J Bacteriol 175:1745–1755

    PubMed  CAS  PubMed Central  Google Scholar 

  • Liu J, Mushegian A (2004) Displacements of prohead protease genes in the late operons of double-stranded-DNA bacteriophages. J Bacteriol 186:4369–4375

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Loessner MJ (2005) Bacteriophage endolysins—current state of research and applications. Curr Op Microbiol 8:480–487

    Article  CAS  Google Scholar 

  • Low DA, Weyand NJ, Mahan NJ (2001) Roles of DNA adenine methylation in regulating bacterial gene expression and virulence. Infect Immun 69:7197–7204

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucl Acids Res 25:955–964

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Mendum TA, Clark IM, Hirsch PR (2001) Characterization of two novel Rhizobium leguminosarum bacteriophages from a field release site of genetically-modified rhizobia. Anton van Leeuwen 79:189–197

    Article  CAS  Google Scholar 

  • Noel KD, Sánchez A, Fernández L, Leemans J, Cevallos MA (1984) Rhizobium phaseoli symbiotic mutants with transposon Tn5 insertions. J Bacteriol 158:148–155

    PubMed  CAS  PubMed Central  Google Scholar 

  • Olasz F, Dorgai L, Papp P, Hermesz E, Kosa E, Orosz L (1985) On the site specific recombination of phage 16-3 of Rhizobium meliloti: identification of genetic elements and att recombinations. Mol Gen Genet 201:289–295

    Article  CAS  Google Scholar 

  • Orosz L, Sváb Z, Kondorosi Á, Sík T (1973) Genetic studies on Rhizobiophage 16-3 I. Genes and functions on the chromosome. Mol Gen Genet 125:341–351

    PubMed  CAS  Google Scholar 

  • Papp I, Dorgai L, Papp P, Jónás E, Olasz F, Orosz L (1993) The bacterial attachment site of the temperate Rhizobium phage 16-3 overlaps the 3′ end of a putative proline transfer-RNA gene. Mol Gen Genet 240:258–264

    Article  PubMed  CAS  Google Scholar 

  • Pastagia M, Schuch R, Fischetti VA, Huang DB (2013) Lysins: the arrival of pathogen-directed anti-infectives. J Med Microbiol 62:1506–1516

    Article  PubMed  CAS  Google Scholar 

  • Pierson LS, Kahn ML (1987) Integration of satellite bacteriophage-P4 in Escherichia coli—DNA-sequences of the phage and host regions involved in site-specific recombination. J Mol Biol 196:487–496

    Article  PubMed  CAS  Google Scholar 

  • Poole PS, Blyth A, Reid CJ, Walters K (1994) Myo-inositol catabolism and catabolite regulation in Rhizobium leguminosarum bv. viciae. Microbiology 140:2787–2795

    Article  CAS  Google Scholar 

  • Priefer UB (1989) Genes involved in lipopolysaccharide production and symbiosis are clustered on the chromosome of Rhizobium leguminosarum biovar viciae VF39. J Bacteriol 171:6161–6168

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rao VB, Feiss M (2008) The bacteriophage DNA packaging motor. Annu Rev Genet 42:647–681

    Article  PubMed  CAS  Google Scholar 

  • Rocha EPC, Danchin A (2002) Base composition bias might result from competition for metabolic resources. Trends Genet 18:291–294

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning—a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Santamaria RI, Bustos P, Sepúlveda-Robles O, Lozano L, Rodríguez C, Fernández JL, Juárez S, Kameyama L, Guarneros G, Dávila G, González V (2014) Narrow host range bacteriophages that infect Rhizobium etli associate with distinct genomic types. Appl Environ Microbiol 80:446–454

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Semsey S, Papp I, Buzas Z, Patthy A, Orosz L, Papp PP (1999) Identification of site-specific recombination genes int and xis of the Rhizobium temperate phage 16-3. J Bacteriol 181:4185–4192

    PubMed  CAS  PubMed Central  Google Scholar 

  • Semsey S, Blaha B, Köles K, Orosz L, Papp PP (2002) Site-specific integrative elements of rhizobiophage 16-3 can integrate into proline tRNA (CGG) genes in different bacterial genera. J Bacteriol 184:177–182

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Shu D, Guo PX (2003) Only one pRNA hexamer but multiple copies of the DNA-packaging protein gp16 are needed for the motor to package bacterial virus phi29 genomic DNA. Virology 309:108–113

    Article  PubMed  CAS  Google Scholar 

  • Smith-Mungo L, Chan IT, Landy A (1994) Structure of the P22 att site. Conservation and divergence in the lambda motif of recombinogenic complexes. J Biol Chem 269:20798–20805

    PubMed  CAS  Google Scholar 

  • Sváb Z, Kondorosi Á, Orosz L (1978) Specialized transduction of a cystein marker by Rhizobium meliloti phage 16-3. J Gen Microbiol 106:321–327

    Article  Google Scholar 

  • Swinton D, Hattman S, Benzinger R, Buchanan-Wollaston V, Beringer JE (1985) Replacement of the deoxycytidine residues in Rhizobium bacteriophage RL38JI DNA. FEBS Lett 184:294–298

    Article  PubMed  CAS  Google Scholar 

  • Szende K, Ördögh F (1960) Die Lysogenie von Rhizobium meliloti. Naturwissenschaften 47:404–405

    Article  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Uchiumi T, Abe M, Higashi S (1998) Integration of the temperate phage phi U into the putative tRNA gene on the chromosome of its host Rhizobium leguminosarum biovar trifolii. J Gen Appl Microbiol 44:93–99

    Article  PubMed  CAS  Google Scholar 

  • Waldor MK, Friedman DI, Adhya SL (2005) Phages: their role in bacterial pathogenesis and biotechnology. ASM Press

  • Willems A (2006) The taxonomy of rhizobia: an overview. Plant Soil 287:3–14

    Article  CAS  Google Scholar 

  • Williams KP (2002) Integration sites for genetic elements in prokaryotic tRNA and tmRNA genes: sublocation preference of integrase subfamilies. Nucl Acids Res 30:866–875

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Young JPW, Crossman LC, Johnston AWB et al (2006) The genome of Rhizobium leguminosarum has recognizable core and accessory components. Genome Biol 7:R34. doi:10.1186/gb-2006-7-4-r34

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was funded by a Saskatchewan Ministry of Agriculture, Agriculture Development Fund grant and NSERC (Natural Sciences and Engineering Research Council of Canada) Discovery Grants to MFH and CKY. APH acknowledges the support of an Alberta Ingenuity Technology Futures (AITF) graduate scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael F. Hynes.

Ethics declarations

This study was funded by grants from the Saskatchewan Ministry of Agriculture, Agriculture Development Fund (to CKY and MFH, Grant # 20080211) and from NSERC (Natural Sciences and Engineering Research Council of Canada) (Discovery Grant # 105660 to MFH) (Discovery grant # 288281 to CKY).

Conflict of interest

All authors declare that they have no conflict of interest with respect to this paper.

Ethical approval

This article did involve studies with animals performed by any of the authors.

Additional information

Communicated by S. Hohmann.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Halmillawewa, A.P., Restrepo-Córdoba, M., Perry, B.J. et al. Characterization of the temperate phage vB_RleM_PPF1 and its site-specific integration into the Rhizobium leguminosarum F1 genome. Mol Genet Genomics 291, 349–362 (2016). https://doi.org/10.1007/s00438-015-1113-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-015-1113-8

Keywords

Navigation