Molecular Genetics and Genomics

, Volume 290, Issue 6, pp 2297–2312 | Cite as

Evolutionary genomics of miniature inverted-repeat transposable elements (MITEs) in Brassica

  • Faisal NourozEmail author
  • Shumaila Noreen
  • J. S. Heslop-Harrison
Original Paper


Miniature inverted-repeat transposable elements (MITEs) are truncated derivatives of autonomous DNA transposons, and are dispersed abundantly in most eukaryotic genomes. We aimed to characterize various MITEs families in Brassica in terms of their presence, sequence characteristics and evolutionary activity. Dot plot analyses involving comparison of homoeologous bacterial artificial chromosome (BAC) sequences allowed identification of 15 novel families of mobile MITEs. Of which, 5 were Stowaway-like with TA Target Site Duplications (TSDs), 4 Tourist-like with TAA/TTA TSDs, 5 Mutator-like with 9–10 bp TSDs and 1 novel MITE (BoXMITE1) flanked by 3 bp TSDs. Our data suggested that there are about 30,000 MITE-related sequences in Brassica rapa and B. oleracea genomes. In situ hybridization showed one abundant family was dispersed in the A-genome, while another was located near 45S rDNA sites. PCR analysis using primers flanking sequences of MITE elements detected MITE insertion polymorphisms between and within the three Brassica (AA, BB, CC) genomes, with many insertions being specific to single genomes and others showing evidence of more recent evolutionary insertions. Our BAC sequence comparison strategy enables identification of evolutionarily active MITEs with no prior knowledge of MITE sequences. The details of MITE families reported in Brassica enable their identification, characterization and annotation. Insertion polymorphisms of MITEs and their transposition activity indicated important mechanism of genome evolution and diversification. MITE families derived from known Mariner, Harbinger and Mutator DNA transposons were discovered, as well as some novel structures. The identification of Brassica MITEs will have broad applications in Brassica genomics, breeding, hybridization and phylogeny through their use as DNA markers.


Biodiversity Brassica Genome evolution Genomics MITEs Transposable elements 



This work was supported by Post-quake Development Plan, Hazara University Mansehra, Pakistan. We are grateful to Hazara University and Higher Education Commission of Pakistan for funding and support of this work. We thank Dr. Graham Teakle and Dr. Guy Barker from Warwick University, UK and Dr. Xian Hong Ge from University of Wuhan, China for supplying seeds or DNA from the Brassica accessions studied.

Supplementary material

438_2015_1076_MOESM1_ESM.tif (1.2 mb)
Supplementary Fig. Dot plot of B. rapa BAC sequence (AC189298.1) against B. oleracea (EU642504.1) to identify MITE insertions. The diagonal line running from one corner to other shows the homology of the two sequence and gaps in the line show insertions in one or other species. Three MITEs (BrTOUR3-1, BoSTOW3-1, BoXMITE1-1) listed in Table 2a are shown in blue colour. The scale indicates the nucleotide numbers. (TIFF 1217 kb)


  1. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402PubMedCentralCrossRefPubMedGoogle Scholar
  2. Altschul SF, Gertz EM, Agarwala R, Schaffer AA, Yu YK (2009) PSI-BLAST pseudocounts and the minimum description length principle. Nucleic Acids Res 37:815–824. doi: 10.1093/nar/gkn981 PubMedCentralCrossRefPubMedGoogle Scholar
  3. Benjak A, Boue S, Forneck A, Casacuberta JM (2009) Recent amplification and impact of MITEs on the genome of grapevine (Vitis vinifera L.). Genome Biol Evol 1:75–84. doi: 10.1093/gbe/evp009 PubMedCentralCrossRefPubMedGoogle Scholar
  4. Bergemann M, Lespinet O, M’Barek SB, Daboussi MJ, Dufresne M (2008) Genome-wide analysis of the Fusarium oxysporum mimp family of MITEs and mobilization of both native and de novo created mimps. J Mol Evol 67(6):631–642. doi: 10.1007/s00239-008-9164-7 CrossRefPubMedGoogle Scholar
  5. Brandes A, Heslop-Harrison JS, Kamm A, Kubis T, Doudrick T, Schmidt T (1997) Comparative analysis of the chromosomal and genomic organization of Ty1-copia-like retrotransposons in pteridophytes, gymnosperms and angiosperms. Plant Mol Biol 33:11–21CrossRefPubMedGoogle Scholar
  6. Bureau TE, Wessler SR (1992) Tourist: a large family of small inverted repeat elements frequently associated with maize genes. Plant Cell 4:1283–1294. doi: 10.1105/tpc.4.10.1283 PubMedCentralCrossRefPubMedGoogle Scholar
  7. Bureau TE, Wessler SR (1994) Stowaway: a new family of inverted repeat elements associated with the genes of both monocotyledonous and dicotyledonous plants. Plant Cell 6:907–916. doi: 10.1105/tpc.6.6.907 PubMedCentralCrossRefPubMedGoogle Scholar
  8. Capy P (2005) Classification and nomenclature of retrotransposable elements. Cytogenet Genome Res 110:457–461. doi: 10.1159/000084978 CrossRefPubMedGoogle Scholar
  9. Chen J, Hu Q, Zhang Y, Lu C, Kuang H (2013) P-MITE: a database for plant miniature inverted-repeat transposable elements. Nucleic Acid Res: 1–6. doi: 10.1093/nar/gkt1000
  10. Cifuentes M, Eber F, Lucas MO, Lode M, Chevre AM, Jenczewski E (2010) Repeated polyploidy drove different levels of crossover suppression between homoeologous chromosomes in Brassica napus allohaploids. Plant Cell 22(7):2265–2276. doi: 10.1105/tpc.109.072991 PubMedCentralCrossRefPubMedGoogle Scholar
  11. Eagle S, Crease, T (2012) Copy number variation of ribosomal DNA and Pokey transposons in natural populations of Daphnia. Mobile DNA 3(1). URL
  12. Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15Google Scholar
  13. Feschotte C, Mouches C (2000) Evidence that a family of miniature inverted-repeat transposable elements (MITEs) from the Arabidopsis thaliana genome has arisen from a pogo-like DNA transposon. Mol Biol Evol 17:730–737CrossRefPubMedGoogle Scholar
  14. Flavell AJ, Knox MR, Pearce SR, Ellis TH (1998) Retrotransposon-based insertion polymorphisms (RBIP) for high throughput marker analysis. Plant J 16:643–650CrossRefPubMedGoogle Scholar
  15. Ge XH, Wang J, Li ZY (2009) Different genome-specific chromosome stabilities in synthetic Brassica allohexaploids revealed by wide crosses with Orychophragmus. Ann Botany 104:19–31. doi: 10.1093/aob/mcp099 CrossRefGoogle Scholar
  16. Goubely C, Arnaud P, Tatout C, Heslop-Harrison JS, Deragon JM (1999) S1 SINE retroposons are methylated at symmetrical and non-symmetrical positions in Brassica napus: identification of a preferred target site for asymmetrical methylation. Plant Mol Biol 39:243–255CrossRefPubMedGoogle Scholar
  17. Heneen WK, Geleta M, Brismar K, Xiong Z, Pires JC, Hasterok R, Stoute AJ, Scott RJ, King GJ, Kurup S (2012) Seed colour loci, homoeology and linkage groups of the C genome chromosomes revealed in Brassica rapaB. oleracea monosomic alien addition lines. Ann Botany 109(7):1227–1242. doi: 10.1093/aob/mcs052 CrossRefGoogle Scholar
  18. Hikosaka A, Nishimura K, Hikosaka-Katayama T, Kawahara A (2011) Recent transposition activity of Xenopus T2 family miniature inverted-repeat transposable elements. Mol Genet Genomics 285(3):219–224. doi: 10.1007/s00438-010-0599-3 CrossRefPubMedGoogle Scholar
  19. Jiang N, Bao Z, Zhang X, Eddy SR, Wessler SR (2004a) Pack-MULE transposable elements mediate gene evolution in plants. Nature 431:569–573. doi: 10.1038/nature02953 CrossRefPubMedGoogle Scholar
  20. Jiang N, Feschotte C, Zhang X, Wessler SR (2004b) Using rice to understand the origin and amplification of miniature inverted repeat transposable elements (MITEs). Curr Opin Plant Biol 7:115–119. doi: 10.1016/j.pbi.2004.01.004 CrossRefPubMedGoogle Scholar
  21. Junier T, Pagni M (2000) Dotlet: diagonal plots in a web browser. Bioinformatics 16:178–179CrossRefPubMedGoogle Scholar
  22. Jurka J, Kapitonov VV, Pavlicek A, Klonowski P, Kohany O, Walichiewicz J (2005) Repbase update, a database of eukaryotic repetitive elements. Cytogenet Genome Res 110:462–467. doi: 10.1159/000084979 CrossRefPubMedGoogle Scholar
  23. Kuang H, Padmanabhan C, Li F, Kamei A, Bhaskar PB, Ouyang S, Jiang J, Buell CR, Baker B (2009) Identification of miniature inverted-repeat transposable elements (MITEs) and biogenesis of their siRNAs in the Solanaceae: new functional implications for MITEs. Genome Res 19:42–56. doi: 10.1101/gr.078196.108 PubMedCentralCrossRefPubMedGoogle Scholar
  24. Kubis SE, Heslop-Harrison JS, Desel C, Schmidt T (1998) The genomic organization of non-LTR retrotransposons (LINEs) from three Beta species and five other angiosperms. Plant Mol Biol 36: 821–831.
  25. Kuhn GC, Heslop-Harrison JS (2011) Characterization and genomic organization of PERI, a repetitive DNA in the Drosophila buzzatii cluster related to DINE-1 transposable elements and highly abundant in the sex chromosomes. Cytogenet Genome Res 132(1–2):79–88. doi: 10.1159/000320921 CrossRefPubMedGoogle Scholar
  26. Kuipers AG, Heslop-Harrison JS, Jacobsen E (1998) Characterisation and physical localisation of Ty1-copia-like retrotransposons in four Alstroemeria species. Genome 41(3):357–367CrossRefPubMedGoogle Scholar
  27. Kumar S, Atri C, Sangha MK, Banga S (2011) Screening of wild crucifers for resistance to mustard aphid, Lipaphis erysimi (kaltenbach) and attempt at introgression of resistance gene(s) from Brassica fruticulosa to Brassica juncea. Euphytica 179(3):461–470CrossRefGoogle Scholar
  28. Lu C, Chen J, Zhang Y, Hu Q, Su W, Kuang H (2012) Miniature inverted-repeat transposable elements (MITEs) have been accumulated through amplification bursts and play important roles in gene expression and species diversity in Oryza sativa. Mol Biol Evol 29:1005–1017. doi: 10.1093/molbev/msr282 PubMedCentralCrossRefPubMedGoogle Scholar
  29. Lyons M, Cardle L, Rostoks N, Waugh R, Flavell AJ (2008) Isolation, analysis and marker utility of novel miniature inverted repeat transposable elements from the barley genome. Mol Genet Genomics 280:275–285. doi: 10.1007/s00438-008-0363-0 CrossRefPubMedGoogle Scholar
  30. Madlung A, Comai L (2004). The effect of stress on genome regulation and structure. Ann Botany 94 (4): 481–495. URL
  31. Menzel G, Krebs C, Diez M, Holtgräwe D, Weisshaar B, Minoche AE, Dohm JC, Himmelbauer H, Schmidt T (2012) Survey of sugar beet (Beta vulgaris L.) hAT transposons and MITE-like hATpin derivatives. Plant Mol Biol 78:393–405. doi: 10.1007/s11103-011-9872-z CrossRefPubMedGoogle Scholar
  32. Menzel G, Heitkam T, Seibt KM, Nouroz F, Müller-Stoerme M, HeslopHarrison JS, Schmidt T (2014) The diversification and activity of hAT transposon in Musa genome. Chr Res 22(4):559–571CrossRefGoogle Scholar
  33. Oki N, Yano K, Okumoto Y, Tsukiyama T, Teraishi M, Tanisaka T (2008) A genome-wide view of miniature inverted-repeat transposable elements (MITEs) in rice, Oryza sativa ssp. japonica. Gen Genetic Sys 83:321–329CrossRefGoogle Scholar
  34. Ouyang S, Buell CR (2004) The TIGR Plant Repeat Databases: a collective resource for the identification of repetitive sequences in plants. Nucleic Acids Res 32:D360–D363. doi: 10.1093/nar/gkh099 PubMedCentralCrossRefPubMedGoogle Scholar
  35. Sarilar V, Marmagne A, Brabant P, Joets J, Alix K (2011) BraSto, a Stowaway MITE from Brassica: recently active copies preferentially accumulate in the gene space. Plant Mol Biol 77:59–75. doi: 10.1007/s11103-011-9794-9 CrossRefPubMedGoogle Scholar
  36. Shirasawa K, Hirakawa H, Tabata S, Hasegawa M, Kiyoshima H, Suzuki S, Sasamoto S, Watanabe A, Fujishiro T, Isobe S (2012) Characterization of active miniature inverted-repeat transposable elements in peanut genome. Theor Appl Genet 124(8):1429–1438. doi: 10.1007/s00122-012-1798-6 PubMedCentralCrossRefPubMedGoogle Scholar
  37. Sikka SM (1940) Cytogenetics of Brassica hybrids and species. J Genetics 40:441–509CrossRefGoogle Scholar
  38. Sonnhammer EL, Durbin R (1995) A dot-matrix program with dynamic threshold control suited for genomic DNA and protein sequence analysis. Gene 167: GC1-10Google Scholar
  39. Sun G, Pourkheirandish M, Komatsuda T (2009) Molecular evolution and phylogeny of the RPB2 gene in the genus Hordeum. Ann Botany 103 (6): 975–983. URL
  40. Tu Z (2001) Eight novel families of miniature inverted repeat transposable elements in the African malaria mosquito, Anopheles gambiae. Proc Natl Acad Sci USA 98:1699–1704. doi: 10.1073/pnas.041593198 PubMedCentralCrossRefPubMedGoogle Scholar
  41. Tu Y, Sun J, Ge X, Li Z (2009) Chromosome elimination, addition and introgression in intertribal partial hybrids between Brassica rapa and Isatis indigotica. Ann Botany 103 (7): 1039–1048. URL
  42. Walley PG, Teakle GR, Moore JD, Allender CJ, Pink DAC, Buchanan-Wollaston V, Barker G (2012) Developing genetic resources for pre-breeding in Brassica oleracea l: an overview of the UK perspective. J Plant Biol 39(1):62–68Google Scholar
  43. Wessler SR, Bureau TE, White SE (1995) LTR-retrotransposons and MITEs: important players in the evolution of plant genomes. Curr Opin Genetics 5:814–821CrossRefGoogle Scholar
  44. Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell A, Leroy P, Morgante M, Panaud O, Paux E, SanMiguel P, Schulman AH (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Gen 8:973–982. doi: 10.1038/nrg2165 CrossRefGoogle Scholar
  45. Yang G, Hall TC (2003) MAK, a computational tool kit for automated MITE analysis. Nucleic Acids Res 31:3659–3665PubMedCentralCrossRefPubMedGoogle Scholar
  46. Zerjal T, Rousselet A, Mhiri C, Combes V, Madur D, Grandbastien MA, Charcosset A, Tenaillon MI (2012) Maize genetic diversity and association mapping using transposable element insertion polymorphisms. Theor Appl Genet 124(8):1521–1537. doi: 10.1007/s00122-012-1807-9 CrossRefPubMedGoogle Scholar
  47. Zhang X, Jiang N, Feschotte C, Wessler SR (2004) PIF- and Pong-like transposable elements: distribution, evolution and relationship with Tourist-like miniature inverted-repeat transposable elements. Genetics 166:971–986PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Faisal Nouroz
    • 1
    • 3
    Email author
  • Shumaila Noreen
    • 2
  • J. S. Heslop-Harrison
    • 1
  1. 1.Molecular Cytogenetics Laboratory, Department of BiologyUniversity of LeicesterLeicesterUK
  2. 2.Behavioural Genetics Laboratory, Department of GeneticsUniversity of LeicesterLeicesterUK
  3. 3.Department of BotanyHazara University MansehraMansehraPakistan

Personalised recommendations