Advertisement

Molecular Genetics and Genomics

, Volume 290, Issue 4, pp 1457–1470 | Cite as

Construction of a high-density DArTseq SNP-based genetic map and identification of genomic regions with segregation distortion in a genetic population derived from a cross between feral and cultivated-type watermelon

  • Runsheng Ren
  • Rumiana Ray
  • Pingfang Li
  • Jinhua Xu
  • Man Zhang
  • Guang Liu
  • Xiefeng Yao
  • Andrzej Kilian
  • Xingping YangEmail author
Original Paper

Abstract

Watermelon [Citrullus lanatus (Thunb.) Matsum. & Nakai] is an economically important vegetable crop grown extensively worldwide. To facilitate the identification of agronomically important traits and provide new information for genetic and genomic research on this species, a high-density genetic linkage map of watermelon was constructed using an F2 population derived from a cross between elite watermelon cultivar K3 and wild watermelon germplasm PI 189225. Based on a sliding window approach, a total of 1,161 bin markers representing 3,465 SNP markers were mapped onto 11 linkage groups corresponding to the chromosome pair number of watermelon. The total length of the genetic map is 1,099.2 cM, with an average distance between bins of 1.0 cM. The number of markers in each chromosome varies from 62 in chromosome 07 to 160 in chromosome 05. The length of individual chromosomes ranged between 61.8 cM for chromosome 07 and 140.2 cM for chromosome 05. A total of 616 SNP bin markers showed significant (P < 0.05) segregation distortion across all 11 chromosomes, and 513 (83.3 %) of these distorted loci showed distortion in favor of the elite watermelon cultivar K3 allele and 103 were skewed toward PI 189225. The number of SNPs and InDels per Mb varied considerably across the segregation distorted regions (SDRs) on each chromosome, and a mixture of dense and sparse SNPs and InDel SDRs coexisted on some chromosomes suggesting that SDRs were randomly distributed throughout the genome. Recombination rates varied greatly among each chromosome, from 2.0 to 4.2 centimorgans per megabase (cM/Mb). An inconsistency was found between the genetic and physical positions on the map for a segment on chromosome 11. The high-density genetic map described in the present study will facilitate fine mapping of quantitative trait loci, the identification of candidate genes, map-based cloning, as well as marker-assisted selection (MAS) in watermelon breeding programs.

Keywords

Watermelon Linkage map SNP High density DArTseq 

Notes

Acknowledgments

The authors wish to thank Damian Jaccoud and Haitao Xiang for providing the SNP data and answering questions about data analysis. This research was supported by Grants from the China Postdoctoral Science Foundation (2013M541624), Jiangsu Province Postdoctoral Science Foundation (1301068B) and the Jiangsu Provincial Major Support Program for Agriculture (BE2012323).

Supplementary material

438_2015_997_MOESM1_ESM.xlsx (32 kb)
Supplementary Table 1. The number of SNP in each bin marker (XLS) (XLSX 32 kb)
438_2015_997_MOESM2_ESM.xlsx (58 kb)
Supplementary Table 2. Bin markers used to construct the genetic map of watermelon. Their chromosome, bin position, genetic distance, marker name, bin marker start, bin marker end and bin marker length are listed.(XLS) (XLSX 58 kb)
438_2015_997_MOESM3_ESM.xlsx (42 kb)
Supplementary Table 3. The genetic map of K3 × PI 189225 144 individuals F2 population.(XLS) (XLSX 42 kb)

References

  1. Akhunov E, Nicolet C, Dvorak J (2009) Single nucleotide polymorphism genotyping in polyploid wheat with the Illumina GoldenGate assay. Theor Appl Genet 119:507–517PubMedCentralPubMedCrossRefGoogle Scholar
  2. Altshuler D, Pollara VJ, Cowles CR, Van Etten WJ, Baldwin J, Linton L, Lander ES (2000) An SNP map of the human genome generated by reduced representation shotgun sequencing. Nature 407:513–516PubMedCrossRefGoogle Scholar
  3. Arumuganathan K, Earle E (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Report 9:208–218CrossRefGoogle Scholar
  4. Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA, Selker EU, Cresko WA, Johnson EA (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS One 3:e3376PubMedCentralPubMedCrossRefGoogle Scholar
  5. Boyhan G, Norton J, Abrahams B, Wen H (1994) A new source of resistance to anthracnose (Race 2) in watermelon. HortScience 29:111–112Google Scholar
  6. Brookes AJ (1999) The essence of SNPs. Gene 234:177–186PubMedCrossRefGoogle Scholar
  7. Chen H, Xie W, He H, Yu H, Chen W, Li J, Yu R, Yao Y, Zhang W, He Y, Tang X, Zhou F, Deng XW, Zhang Q (2014) A high-density SNP genotyping array for rice biology and molecular breeding. Mol Plant 7:541–553PubMedCrossRefGoogle Scholar
  8. Courtois B, Audebert A, Dardou A, Roques S, Ghneim-Herrera T, Droc G, Frouin J, Rouan L, Gozé E, Kilian A (2013) Genome-wide association mapping of root traits in a japonica rice panel. PLoS One 8:e78037PubMedCentralPubMedCrossRefGoogle Scholar
  9. Cruz VM, Kilian A, Dierig DA (2013) Development of DArT marker platforms and genetic diversity assessment of the U.S. collection of the new oilseed crop lesquerella and related species. PLoS One 8:e64062PubMedCentralPubMedCrossRefGoogle Scholar
  10. Deleu W, Esteras C, Roig C, Gonzalez-To M, Fernandez-Silva I, Gonzalez-Ibeas D, Blanca J, Aranda MA, Arus P, Nuez F, Monforte AJ, Pico MB, Garcia-Mas J (2009) A set of EST-SNPs for map saturation and cultivar identification in melon. BMC Plant Biol 9:90PubMedCentralPubMedCrossRefGoogle Scholar
  11. Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6:e19379PubMedCentralPubMedCrossRefGoogle Scholar
  12. Esteras C, Gomez P, Monforte AJ, Blanca J, Vicente-Dolera N, Roig C, Nuez F, Pico B (2012) High-throughput SNP genotyping in Cucurbita pepo for map construction and quantitative trait loci mapping. BMC Genom 13:80CrossRefGoogle Scholar
  13. Ganal MW, Altmann T, Röder MS (2009) SNP identification in crop plants. Curr Opin Plant Biol 12:211–217PubMedCrossRefGoogle Scholar
  14. Ganal MW, Durstewitz G, Polley A, Berard A, Buckler ES, Charcosset A, Clarke JD, Graner EM, Hansen M, Joets J, Le Paslier MC, McMullen MD, Montalent P, Rose M, Schon CC, Sun Q, Walter H, Martin OC, Falque M (2011) A large maize (Zea mays L.) SNP genotyping array: development and germplasm genotyping, and genetic mapping to compare with the B73 reference genome. PLoS ONE 6:e28334PubMedCentralPubMedCrossRefGoogle Scholar
  15. Ganal MW, Polley A, Graner E-M, Plieske J, Wieseke R, Luerssen H, Durstewitz G (2012) Large SNP arrays for genotyping in crop plants. J Biosci 37:821–828PubMedCrossRefGoogle Scholar
  16. Garcia-Mas J, Benjak A, Sanseverino W, Bourgeois M, Mir G, Gonzalez VM, Henaff E, Camara F, Cozzuto L, Lowy E, Alioto T, Capella-Gutierrez S, Blanca J, Canizares J, Ziarsolo P, Gonzalez-Ibeas D, Rodriguez-Moreno L, Droege M, Du L, Alvarez-Tejado M, Lorente-Galdos B, Mele M, Yang L, Weng Y, Navarro A, Marques-Bonet T, Aranda MA, Nuez F, Pico B, Gabaldon T, Roma G, Guigo R, Casacuberta JM, Arus P, Puigdomenech P (2012) The genome of melon (Cucumis melo L.). Proc Natl Acad Sci U S A 109:11872–11877PubMedCentralPubMedCrossRefGoogle Scholar
  17. Guo S, Liu J, Zheng Y, Huang M, Zhang H, Gong G, He H, Ren Y, Zhong S, Fei Z, Xu Y (2011) Characterization of transcriptome dynamics during watermelon fruit development: sequencing, assembly, annotation and gene expression profiles. BMC Genom 12:454CrossRefGoogle Scholar
  18. Guo S, Zhang J, Sun H, Salse J, Lucas WJ, Zhang H, Zheng Y, Mao L, Ren Y, Wang Z (2013) The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions. Nat Genet 45:51–58PubMedCrossRefGoogle Scholar
  19. Gusmini G, Song R, Wehner TC (2005) New sources of resistance to gummy stem blight in watermelon. Crop Sci 45:582–588CrossRefGoogle Scholar
  20. Harel-Beja R, Tzuri G, Portnoy V, Lotan-Pompan M, Lev S, Cohen S, Dai N, Yeselson L, Meir A, Libhaber SE, Avisar E, Melame T, van Koert P, Verbakel H, Hofstede R, Volpin H, Oliver M, Fougedoire A, Stalh C, Fauve J, Copes B, Fei Z, Giovannoni J, Ori N, Lewinsohn E, Sherman A, Burger J, Tadmor Y, Schaffer AA, Katzir N (2010) A genetic map of melon highly enriched with fruit quality QTLs and EST markers, including sugar and carotenoid metabolism genes. Theor Appl Genet 121:511–533PubMedCrossRefGoogle Scholar
  21. Harushima Y, Nakagahra M, Yano M, Sasaki T, Kurata N (2001) A genome-wide survey of reproductive barriers in an intraspecific hybrid. Genetics 159:883–892PubMedCentralPubMedGoogle Scholar
  22. Hashizume T, Shimamoto I, Harushima Y, Yui M, Sato T, Imai T, Hirai M (1996) Construction of a linkage map for watermelon (Citrullus lanatus (Thunb.) Matsum & Nakai) using random amplified polymorphic DNA (RAPD). Euphytica 90:265–273CrossRefGoogle Scholar
  23. Hashizume T, Shimamoto I, Hirai M (2003) Construction of a linkage map and QTL analysis of horticultural traits for watermelon [Citrullus lanatus (THUNB.) Matsum & Nakai] using RAPD, RFLP and ISSR markers. Theor Appl Genet 106:779–785PubMedGoogle Scholar
  24. Hawkins LK, Dane F, Kubisiak TL, Rhodes BB, Jarret RL (2001) Linkage mapping in a watermelon population segregating for fusarium wilt resistance. J Am Soc Hortic Sci 126:344–350Google Scholar
  25. Huang S, Li R, Zhang Z, Li L, Gu X, Fan W, Lucas WJ, Wang X, Xie B, Ni P, Ren Y, Zhu H, Li J, Lin K, Jin W, Fei Z, Li G, Staub J, Kilian A, van der Vossen EA, Wu Y, Guo J, He J, Jia Z, Ren Y, Tian G, Lu Y, Ruan J, Qian W, Wang M, Huang Q, Li B, Xuan Z, Cao J, Asan WuZ, Zhang J, Cai Q, Bai Y, Zhao B, Han Y, Li Y, Li X, Wang S, Shi Q, Liu S, Cho WK, Kim JY, Xu Y, Heller-Uszynska K, Miao H, Cheng Z, Zhang S, Wu J, Yang Y, Kang H, Li M, Liang H, Ren X, Shi Z, Wen M, Jian M, Yang H, Zhang G, Yang Z, Chen R, Liu S, Li J, Ma L, Liu H, Zhou Y, Zhao J, Fang X, Li G, Fang L, Li Y, Liu D, Zheng H, Zhang Y, Qin N, Li Z, Yang G, Yang S, Bolund L, Kristiansen K, Zheng H, Li S, Zhang X, Yang H, Wang J, Sun R, Zhang B, Jiang S, Wang J, Du Y, Li S (2009) The genome of the cucumber, Cucumis sativus L. Nat Genet 41:1275–1281PubMedCrossRefGoogle Scholar
  26. Jansen J, De Jong A, Van Ooijen J (2001) Constructing dense genetic linkage maps. Theor Appl Genet 102:1113–1122CrossRefGoogle Scholar
  27. Jones N, Ougham H, Thomas H, Pasakinskiene I (2009) Markers and mapping revisited: finding your gene. New Phytol 183:935–966PubMedCrossRefGoogle Scholar
  28. Joobeur T, Gusmini G, Zhang X, Levi A, Xu Y, Wehner TC, Oliver M, Dean RA (2006) Construction of a watermelon BAC library and identification of SSRs anchored to melon or Arabidopsis genomes. Theor Appl Genet 112:1553–1562PubMedCrossRefGoogle Scholar
  29. Kianian S, Quiros C (1992) Generation of a Brassica oleracea composite RFLP map: linkage arrangements among various populations and evolutionary implications. Theor Appl Genet 84:544–554PubMedGoogle Scholar
  30. Kilian A, Wenzl P, Huttner E, Carling J, Xia L, Blois H, Caig V, Heller-Uszynska K, Jaccoud D, Hopper C (2012) Diversity arrays technology: a generic genome profiling technology on open platforms. In: Data production and analysis in population genomics. Springer, pp 67–89Google Scholar
  31. Kosambi D (1943) The estimation of map distances from recombination values. Annal Eugen 12:172–175CrossRefGoogle Scholar
  32. Levi A, Thomas CE, Keinath AP, Wehner TC (2001a) Genetic diversity among watermelon (Citrullus lanatus and Citrullus colocynthis) accessions. Genet Resour Crop Evol 48:559–566CrossRefGoogle Scholar
  33. Levi A, Thomas CE, Wehner TC, Zhang X (2001b) Low genetic diversity indicates the need to broaden the genetic base of cultivated watermelon. HortScience 36:1096–1101Google Scholar
  34. Levi A, Thomas C, Joobeur T, Zhang X, Davis A (2002) A genetic linkage map for watermelon derived from a testcross population:(Citrullus lanatus var. citroides × C. lanatus var. lanatus) × Citrullus colocynthis. Theor Appl Genet 105:555–563PubMedCrossRefGoogle Scholar
  35. Levi A, Davis A, Hernandez A, Wechter P, Thimmapuram J, Trebitsh T, Tadmor Y, Katzir N, Portnoy V, King S (2006a) Genes expressed during the development and ripening of watermelon fruit. Plant Cell Rep 25:1233–1245PubMedCrossRefGoogle Scholar
  36. Levi A, Thomas C, Trebitsh T, Salman A, King J, Karalius J, Newman M, Reddy O, Xu Y, Zhang X (2006b) An extended linkage map for watermelon based on SRAP, AFLP, SSR, ISSR, and RAPD markers. J Am Soc Hortic Sci 131:393–402Google Scholar
  37. Li X, Wang X, Wei Y, Brummer EC (2011) Prevalence of segregation distortion in diploid alfalfa and its implications for genetics and breeding applications. Theor Appl Genet 123:667–679PubMedCrossRefGoogle Scholar
  38. Lorieux M, Perrier X, Goffinet B, Lanaud C, De León DG (1995) Maximum-likelihood models for mapping genetic markers showing segregation distortion. 2. F2 populations. Theor Appl Genet 90:81–89PubMedCrossRefGoogle Scholar
  39. Lyttle TW (1991) Segregation distorters. Annu Rev Genet 25:511–581PubMedCrossRefGoogle Scholar
  40. Rafalski JA (2002) Novel genetic mapping tools in plants: SNPs and LD-based approaches. Plant Sci 162:329–333CrossRefGoogle Scholar
  41. Raman H, Raman R, Kilian A, Detering F, Carling J, Coombes N, Diffey S, Kadkol G, Edwards D, McCully M, Ruperao P, Parkin IA, Batley J, Luckett DJ, Wratten N (2014) Genome-wide delineation of natural variation for pod shatter resistance in Brassica napus. PLoS ONE 9:e101673PubMedCentralPubMedCrossRefGoogle Scholar
  42. Ren R, Wang M, Chen X, Zhang Z (2012a) Characterization and molecular mapping of Yr52 for high-temperature adult-plant resistance to stripe rust in spring wheat germplasm PI 183527. Theor Appl Genet 125:847–857PubMedCrossRefGoogle Scholar
  43. Ren Y, Zhao H, Kou Q, Jiang J, Guo S, Zhang H, Hou W, Zou X, Sun H, Gong G, Levi A, Xu Y (2012b) A high resolution genetic map anchoring scaffolds of the sequenced watermelon genome. PLoS One 7:e29453PubMedCentralPubMedCrossRefGoogle Scholar
  44. Ren Y, McGregor C, Zhang Y, Gong G, Zhang H, Guo S, Sun H, Cai W, Zhang J, Xu Y (2014) An integrated genetic map based on four mapping populations and quantitative trait loci associated with economically important traits in watermelon (Citrullus lanatus). BMC Plant Biol 14:33PubMedCentralPubMedCrossRefGoogle Scholar
  45. Sandlin K, Prothro J, Heesacker A, Khalilian N, Okashah R, Xiang W, Bachlava E, Caldwell DG, Taylor CA, Seymour DK, White V, Chan E, Tolla G, White C, Safran D, Graham E, Knapp S, McGregor C (2012) Comparative mapping in watermelon [Citrullus lanatus (Thunb.) Matsum. et Nakai]. Theor Appl Genet 125:1603–1618PubMedCrossRefGoogle Scholar
  46. Sansaloni C, Petroli C, Jaccoud D, Carling J, Detering F, Grattapaglia D, Kilian A (2011) Diversity Arrays Technology (DArT) and next-generation sequencing combined: genome-wide, high throughput, highly informative genotyping for molecular breeding of Eucalyptus. In: BMC Proceedings. BioMed Central Ltd, pp P54Google Scholar
  47. Taylor DR, Ingvarsson PK (2003) Common features of segregation distortion in plants and animals. Genetica 117:27–35PubMedCrossRefGoogle Scholar
  48. Team RC (2012) R: A language and environment for statistical computingGoogle Scholar
  49. Tetteh AY, Wehner TC, Davis AR (2010) Identifying resistance to powdery mildew race 2W in the USDA-ARS Watermelon Germplasm Collection. Crop Sci 50:933CrossRefGoogle Scholar
  50. Tetteh AY, Wehner TC, Davis AR (2013) Inheritance of resistance to powdery mildew race 2 in Citrullus lanatus var. lanatus. HortScience 48:1227–1230Google Scholar
  51. Van Ooijen J (2011) Multipoint maximum likelihood mapping in a full-sib family of an outbreeding species. Genet Res 93:343–349CrossRefGoogle Scholar
  52. Voorrips R (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78PubMedCrossRefGoogle Scholar
  53. Wechter WP, Levi A, Harris KR, Davis AR, Fei Z, Katzir N, Giovannoni JJ, Salman-Minkov A, Hernandez A, Thimmapuram J, Tadmor Y, Portnoy V, Trebitsh T (2008) Gene expression in developing watermelon fruit. BMC Genom 9:275CrossRefGoogle Scholar
  54. Zhang R, Xu Y, Yi K, Zhang H, Liu L, Gong G, Levi A (2004) A genetic linkage map for watermelon derived from recombinant inbred lines. J Am Soc Hortic Sci 129:237–243Google Scholar
  55. Zraidi A, Stift G, Pachner M, Shojaeiyan A, Gong L, Lelley T (2007) A consensus map for Cucurbita pepo. Mol Breed 20:375–388CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Runsheng Ren
    • 1
    • 2
  • Rumiana Ray
    • 2
  • Pingfang Li
    • 1
  • Jinhua Xu
    • 1
  • Man Zhang
    • 1
  • Guang Liu
    • 1
  • Xiefeng Yao
    • 1
  • Andrzej Kilian
    • 3
  • Xingping Yang
    • 1
    Email author
  1. 1.Institute of Vegetable CropsJiangsu Academy of Agricultural SciencesNanjingChina
  2. 2.Division of Plant and Crop Sciences, School of BiosciencesUniversity of NottinghamLoughboroughUK
  3. 3.DArT P/LCanberraAustralia

Personalised recommendations