Skip to main content
Log in

Interactions of release factor RF3 with the translation machinery

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

The bacterial release factor RF3 is a GTPase that has been implicated in multiple, incompletely understood steps of protein synthesis. This study explores the genetic interaction of RF3 with other components of the translation machinery. RF3 contributes to translation termination by recycling the class I release factors RF1 and RF2 off post-termination ribosomes. RF3 has also been implicated in dissociation of peptidyl-tRNAs from elongating ribosomes and in a post-peptidyltransferase quality control (post-PT QC) mechanism that selectively terminates ribosomes carrying erroneous peptides. A majority of the in vivo studies on RF3 have been carried out in K-12 strains of Escherichia coli which carry a partially defective RF2 protein with an Ala to Thr substitution at position 246. Here, the contribution of the K-12 specific RF2 variant to RF3 activities has been investigated. Strain reconstruction experiments in both E. coli and Salmonella enterica demonstrate that defects in termination and post-PT QC that are associated with RF3 loss, as well as phenotypes uncovered by phenotypic profiling, are all substantially ameliorated when the incompletely active K-12-specific RF2 protein is replaced by a fully active Ala246 RF2. These results indicate that RF3 loss is well tolerated in bacteria with fully active class I release factors, but that many of the previously reported phenotypes for RF3 deletion strains have been compromised by the presence of a partially defective RF2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agarwal D, Gregory ST, O’Connor M (2011) Error-prone and error-restrictive mutations affecting ribosomal protein S12. J Mol Biol 410:1–9

    Article  CAS  PubMed  Google Scholar 

  • Andersson DI, Andersson SG, Kurland CG (1986) Functional interactions between mutated forms of ribosomal proteins S4, S5 and S12. Biochimie 68:705–713

    Article  CAS  PubMed  Google Scholar 

  • Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2(2006):0008

    PubMed  Google Scholar 

  • Bjare U, Gorini L (1971) Drug dependence reversed by a ribosomal ambiguity mutation, ram, in Escherichia coli. J Mol Biol 57:423–435

    Article  CAS  PubMed  Google Scholar 

  • Bjorkman J, Samuelsson P, Andersson DI, Hughes D (1999) Novel ribosomal mutations affecting translational accuracy, antibiotic resistance and virulence of Salmonella typhimurium. Mol Microbiol 31:53–58

    Article  CAS  PubMed  Google Scholar 

  • Capecchi MR, Klein HA (1969) Characterization of three proteins involved in polypeptide chain termination. Cold Spring Harb Symp Quant Biol 34:469–477

    Article  CAS  PubMed  Google Scholar 

  • Caskey T, Scolnick E, Tompkins R, Goldstein J, Milman G (1969) Peptide chain termination, codon, protein factor, and ribosomal requirements. Cold Spring Harb Symp Quant Biol 34:479–488

    Article  CAS  PubMed  Google Scholar 

  • Dahlgren A, Ryden-Aulin M (2000) A novel mutation in ribosomal protein S4 that affects the function of a mutated RF1. Biochimie 82:683–691

    Article  CAS  PubMed  Google Scholar 

  • Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97:6640–6645

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dincbas V, Heurgue-Hamard V, Buckingham RH, Karimi R, Ehrenberg M (1999) Shutdown in protein synthesis due to the expression of mini-genes in bacteria. J Mol Biol 291:745–759

    Article  CAS  PubMed  Google Scholar 

  • Dincbas-Renqvist V, Engstrom A, Mora L, Heurgue-Hamard V, Buckingham R, Ehrenberg M (2000) A post-translational modification in the GGQ motif of RF2 from Escherichia coli stimulates termination of translation. EMBO J 19:6900–6907

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Freistroffer DV, Pavlov MY, MacDougall J, Buckingham RH, Ehrenberg M (1997) Release factor RF3 in E.coli accelerates the dissociation of release factors RF1 and RF2 from the ribosome in a GTP-dependent manner. EMBO J 16:4126–4133

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gong M, Cruz-Vera LR, Yanofsky C (2007) Ribosome recycling factor and release factor 3 action promotes TnaC-peptidyl-tRNA Dropoff and relieves ribosome stalling during tryptophan induction of tna operon expression in Escherichia coli. J Bacteriol 189:3147–3155

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grentzmann G, Brechemier-Baey D, Heurgue V, Mora L, Buckingham RH (1994) Localization and characterization of the gene encoding release factor RF3 in Escherichia coli. Proc Natl Acad Sci USA 91:5848–5852

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grentzmann G, Brechemier-Baey D, Heurgue-Hamard V, Buckingham RH (1995) Function of polypeptide chain release factor RF-3 in Escherichia coli. RF-3 action in termination is predominantly at UGA-containing stop signals. J Biol Chem 270:10595–10600

    Article  CAS  PubMed  Google Scholar 

  • Kipper K, Sild S, Hetenyi C, Remme J, Liiv A (2011) Pseudouridylation of 23S rRNA helix 69 promotes peptide release by release factor RF2 but not by release factor RF1. Biochimie 93:834–844

    Article  CAS  PubMed  Google Scholar 

  • Kisselev LL, Buckingham RH (2000) Translational termination comes of age. Trends Biochem Sci 25:561–566

    Article  CAS  PubMed  Google Scholar 

  • Margus T, Remm M, Tenson T (2007) Phylogenetic distribution of translational GTPases in bacteria. BMC Genom 8:15

    Article  Google Scholar 

  • Mikuni O, Ito K, Moffat J, Matsumura K, McCaughan K, Nobukuni T, Tate W, Nakamura Y (1994) Identification of the prfC gene, which encodes peptide-chain-release factor 3 of Escherichia coli. Proc Natl Acad Sci USA 91:5798–5802

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Miller J (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory Press, New York

  • Miller JH (1991) A short course in bacterial genetics. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Mora L, Heurgue-Hamard V, de Zamaroczy M, Kervestin S, Buckingham RH (2007) Methylation of bacterial release factors RF1 and RF2 is required for normal translation termination in vivo. J Biol Chem 282:35638–35645

    Article  CAS  PubMed  Google Scholar 

  • Nichols RJ, Sen S, Choo YJ, Beltrao P, Zietek M, Chaba R, Lee S, Kazmierczak KM, Lee KJ, Wong A, Shales M, Lovett S, Winkler ME, Krogan NJ, Typas A, Gross CA (2011) Phenotypic landscape of a bacterial cell. Cell 144:143–156

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • O’Connor M, Gregory ST (2011) Inactivation of the RluD pseudouridine synthase has minimal effects on growth and ribosome function in wild-type Escherichia coli and Salmonella enterica. J Bacteriol 193:154–162

    Article  PubMed Central  PubMed  Google Scholar 

  • O’Connor M, Thomas CL, Zimmermann RA, Dahlberg AE (1997) Decoding fidelity at the ribosomal A and P sites: influence of mutations in three different regions of the decoding domain in 16S rRNA. Nucleic Acids Res 25:1185–1193

    Article  PubMed Central  PubMed  Google Scholar 

  • Petropoulos AD, McDonald ME, Green R, Zaher HS (2014) Distinct roles for release factor 1 and release factor 2 in translational quality control. J Biol Chem 289:17589–17596

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schaub RE, Hayes CS (2011) Deletion of the RluD pseudouridine synthase promotes SsrA peptide tagging of ribosomal protein S7. Mol Microbiol 79:331–341

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vogel HJ, Bonner DM (1956) Acetylornithinase of Escherichia coli: partial purification and some properties. J Biol Chem 218:97–106

    CAS  PubMed  Google Scholar 

  • Zaher HS, Green R (2009) Quality control by the ribosome following peptide bond formation. Nature 457:161–166

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zaher HS, Green R (2011) A primary role for release factor 3 in quality control during translation elongation in Escherichia coli. Cell 147:396–408

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

I am indebted to Dr Diarmaid Hughes, University of Uppsala, for supplying S. enterica strains and to Drs. Steven Gregory and Jennifer Carr for their comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael O’Connor.

Additional information

Communicated by D. Andersson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3107 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

O’Connor, M. Interactions of release factor RF3 with the translation machinery. Mol Genet Genomics 290, 1335–1344 (2015). https://doi.org/10.1007/s00438-015-0994-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-015-0994-x

Keywords

Navigation