Skip to main content
Log in

Characterization and stress-induced expression analysis of Alfin-like transcription factors in Brassica rapa

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

The Alfin-like (AL) transcription factors (TFs) family is involved in many developmental processes, including the growth and development of roots, root hair elongation, meristem development, etc. However, stress resistance-related function and the regulatory mechanism of these TFs have yet to be elucidated. This study identified 15 Brassica rapa AL (BrAL) TFs from BRAD database, analyzed the sequences and profiled their expression first time in response to Fusarium oxysporum f. sp. conglutinans and Pectobacterium carotovorum subsp. carotovorum in fection, cold, salt and drought stresses in B. rapa. Structural and phylogenetic analyses of 15 BrAL TFs revealed four distinct groups (groups I–IV) with AL TFs of Arabidopsis thaliana. In the expression analyses, ten BrAL TFs showed responsive expression after F. oxysporum f. sp. conglutinans infection, while all BrAL TFs showed responses under cold, salt and drought stresses in B. rapa. Interestingly, ten BrAL TFs showed responses to both biotic and abiotic stress factors tested here. The differentially expressed BrAL TFs thus represent potential resources for molecular breeding of Brassica crops resistant against abiotic and biotic stresses. Our findings will also help to elucidate the complex regulatory mechanism of AL TFs in stress resistance and provide a foundation for further functional genomics studies and applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahmed NU, Park J, Jung H, Seo M, Kumar TS, Lee I, Nou IS (2012a) Identification and characterization of stress resistance related genes of Brassica rapa. Biotechnol Lett 34:979–987

    Article  CAS  PubMed  Google Scholar 

  • Ahmed NU, Park JI, Jung HJ, Kang KK, Hur Y, Lim YP, Nou IS (2012b) Molecular Characterization of stress resistance related Chitinase genes of Brassica rapa. Plant Physiol Biochem 58:106–115

    Article  CAS  PubMed  Google Scholar 

  • Ahmed NU, Park J, Jung H, Kang K, Lim Y, Hur Y, Nou IS (2013) Molecular characterization of thaumatin family genes related to stresses in Brassica rapa. Sci Hortic 152:26–34

    Article  CAS  Google Scholar 

  • Bastola DR, Pethe VV, Winicov I (1998) Alfin1, a novel zinc-finger protein in alfalfa roots that binds to promoter elements in the salt-inducible MsPRP2 gene. Plant Mol Biol 38:1123–1135

    Article  CAS  PubMed  Google Scholar 

  • Benfey PN, Weigel D (2001) Transcriptional networks controlling plant development. Plant Physiol 125:109–111

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bienz M (2006) The PHD finger, a nuclear protein-interaction domain. Trends Biochem Sci 31:35–40

    Article  CAS  PubMed  Google Scholar 

  • Cannon SB, Mitra A, Baumgarten A, Young ND, May G (2004) The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol 4:10

    Article  PubMed Central  PubMed  Google Scholar 

  • Carroll SB (2005) Evolution at two levels: on genes and form. PLoS Biol 3:e245

    Article  PubMed Central  PubMed  Google Scholar 

  • Chandrika NNP, Sundaravelpandian K, Yu S, Schmidt W (2013) ALFIN-LIKE 6 is involved in root hair elongation during phosphate deficiency in Arabidopsis. New Phytol 198:709–720. doi:10.1111/nph.12194

    Article  CAS  PubMed  Google Scholar 

  • Cheng F, Liu S, Wu J, Fang L, Sun S, Liu B, Wang X (2011) BRAD, the genetics and genomics database for Brassica plants. BMC Plant Biol 11(1):136. doi:10.1186/1471-2229-11-136

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Holub EB (2001) The arms race is ancient history in Arabidopsis, the wildflower. Nat Rev Genet 2:516–527

    Article  CAS  PubMed  Google Scholar 

  • Kayum MA, Jung HJ, Park JI, Ahmed NU, Saha G, Yang TJ, Nou IS (2014) Identification and expression analysis of WRKY family genes under biotic and abotic stresses in Brassica rapa. Mol Genet Genomics. doi:10.1007/s00438-014-0898-1

    PubMed  Google Scholar 

  • Kong X, Lv W, Jiang S, Zhang D, Cai G, Pan J, Li D (2013) Genome-wide identification and expression analysis of calcium-dependent protein kinase in maize. BMC Genom 14:433

    Article  CAS  Google Scholar 

  • Krochko JE, Bewley JD (1988) Use of electrophoretic techniques in determining the composition of seed storage proteins in alfalfa. Electrophoresis 9:751–763

    Article  CAS  PubMed  Google Scholar 

  • Krochko JE, Pramanik SK, Bewley JD (1992) Contrasting storage protein synthesis and messenger RNA accumulation during development of zygotic and somatic embryos of alfalfa (Medicago sativa L.). Plant Physiol 99:46–53

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee WY, Lee D, Chung WI, Kwon CS (2009) Arabidopsis ING and Alfin1-like protein families localize to the nucleus and bind to H3K4me3/2 via plant homeodomain fingers. Plant J 58:511–524

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Lim YP, Han CT, Nou IS, Hur Y (2013) Genome-wide expression profiles of contrasting inbred lines of Chinese cabbage, Chiifu and Kenshin, under temperature stress. Genes Genom 35:273–288

    Article  CAS  Google Scholar 

  • Letunic I, Doerks T, Bork P (2009) SMART 6: recent updates and new developments. Nucleic Acids Res 37:D229–D232

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Park JI, Ahmed NU, Jung HJ, Thamil Arasan SK, Chung MY, Cho YG, Watanabe M, Nou IS (2014) Identification and Characterization of LIM Gene Family in Brassica rapa. BMC Genom 15:641

    Article  Google Scholar 

  • Qu LJ, Zhu YX (2006) Transcription factor families in Arabidopsis: major progress and outstanding issues for future research. Curr Opin Plant Biol 9:544–549

    Article  CAS  PubMed  Google Scholar 

  • Riechmann JL, Heard J, Martin G, Reuber L, Jiang C (2000) Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290:2105–2110

    Article  CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Schiefelbein J (2003) Cell-fate specification in the epidermis: a common patterning mechanism in the root and shoot. Curr Opin Plant Biol 6:74–78

    Article  CAS  PubMed  Google Scholar 

  • Song Y, Gao J, Yang F, Kua C, Liu J, Cannon CH (2013) Molecular evolutionary analysis of the Alfin-like protein family in Arabidopsis lyrata, Arabidopsis thaliana, and Thellungiella halophila. PLoS ONE 8(7):e66838. doi:10.1371/journal.pone.0066838

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22(22):4673–4680

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang X, Wang H, Wang J, Sun R, Wu J, Liu S (2011) The genome of the mesopolyploid crop species Brassica rapa. Nat Genet 43(10):1035–1049

    Article  CAS  PubMed  Google Scholar 

  • Wei W, Huang J, Hao YJ, Zou HF, Wang HW (2009) Soybean GmPHDtype transcription regulators improve stress tolerance in transgenic Arabidopsis plants. PLoS ONE 4:e7209

    Article  PubMed Central  PubMed  Google Scholar 

  • Winicov I (1993) cDNA encoding putative zinc finger motifs from salt-tolerant alfalfa (Medicago sativa L.) cells. Plant Physiol 102:681–682

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Winicov I (2000) Alfin1 transcription factor overexpression enhances plant root growth under normal and saline conditions and improves salt tolerance in alfalfa. Planta 210:416–422

    Article  CAS  PubMed  Google Scholar 

  • Xiong Y, Liu T, Tian C, Sun S, Li J (2005) Transcription factors in rice: a genome-wide comparative analysis between monocots and eudicots. Plant Mol Biol 59:191–203

    Article  CAS  PubMed  Google Scholar 

  • Yu D, Chen C, Chen Z (2001) Evidence for an important role of WRKY DNA binding proteins in the regulation of NPR1 gene expression. Plant Cell 13:1527–1540

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Golden Seed Project (Center for Horticultural Seed Development, No. 213003-04-2-SB110), the Ministry of Agriculture, the Food and Rural Affairs (MAFRA), the Ministry of Oceans and Fisheries (MOF), the Rural Development Administration (RDA) and the Korea Forest Service (KFS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ill-Sup Nou.

Additional information

Communicated by L. Xiong.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPT 183 kb)

Supplementary material 2 (PDF 204 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kayum, M.A., Park, JI., Ahmed, N.U. et al. Characterization and stress-induced expression analysis of Alfin-like transcription factors in Brassica rapa . Mol Genet Genomics 290, 1299–1311 (2015). https://doi.org/10.1007/s00438-015-0993-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-015-0993-y

Keywords

Navigation