Skip to main content

Advertisement

Log in

Bicluster pattern of codon context usages between flavivirus and vector mosquito Aedes aegypti: relevance to infection and transcriptional response of mosquito genes

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

The mosquito Aedes aegypti is the primary vector of dengue virus (DENV) infection in most of the subtropical and tropical countries. Besides DENV, yellow fever virus (YFV) is also transmitted by A. aegypti. Susceptibility of A. aegypti to West Nile virus (WNV) has also been confirmed. Although studies have indicated correlation of codon bias between flaviviridae and their animal/insect hosts, it is not clear if codon sequences have any relation to susceptibility of A. aegypti to DENV, YFV and WNV. In the current study, usages of codon context sequences (codon pairs for neighboring amino acids) of the vector (A. aegypti) genome as well as the flaviviral genomes are investigated. We used bioinformatics methods to quantify codon context bias in a genome-wide manner of A. aegypti as well as DENV, WNV and YFV sequences. Mutual information statistics was applied to perform bicluster analysis of codon context bias between vector and flaviviral sequences. Functional relevance of the bicluster pattern was inferred from published microarray data. Our study shows that codon context bias of DENV, WNV and YFV sequences varies in a bicluster manner with that of specific sets of genes of A. aegypti. Many of these mosquito genes are known to be differentially expressed in response to flaviviral infection suggesting that codon context sequences of A. aegypti and the flaviviruses may play a role in the susceptible interaction between flaviviruses and this mosquito. The bias in usages of codon context sequences likely has a functional association with susceptibility of A. aegypti to flaviviral infection. The results from this study will allow us to conduct hypothesis-driven tests to examine the role of codon context bias in evolution of vector–virus interactions at the molecular level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akashi H (2001) Gene expression and molecular evolution. Curr Opin Genet Dev 11:660–666

    Article  PubMed  CAS  Google Scholar 

  • Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46

    Google Scholar 

  • Anderson MJ, Willis TJ (2003) Canonical analysis of principal coordinates: a useful method of constrained ordination for ecology. Ecology 84:511–525

    Article  Google Scholar 

  • Barrett AD, Higgs S (2007) Yellow fever: a disease that has yet to be conquered. Annu Rev Entomol 52:209–229

    Article  PubMed  CAS  Google Scholar 

  • Behura SK, Severson DW (2011) Coadaptation of isoacceptor tRNA genes and codon usage bias for translation efficiency in Aedes aegypti and Anopheles gambiae. Insect Mol Biol 20:177–187

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Behura SK, Severson DW (2012a) Intrinsic features of Aedes aegypti genes affect transcriptional responsiveness of mosquito genes to dengue virus infection. Infect Genet Evol 12:1413–1418

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Behura SK, Severson DW (2012b) Comparative analysis of codon usage bias and codon context patterns between Dipteran and Hymenopteran sequenced genomes. PLoS One 7:e43111

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Behura SK, Severson DW (2013a) Codon usage bias: causative factors, quantification methods and genome-wide patterns: with emphasis on insect genomes. Biol Rev 88:49–61

    Article  PubMed  Google Scholar 

  • Behura SK, Severson DW (2013b) Nucleotide substitutions in dengue virus serotypes from Asian and American countries: insights into intracodon recombination and purifying selection. BMC Microbiol 13:37

    Article  PubMed  PubMed Central  Google Scholar 

  • Behura SK, Gomez-Machorro C, Harker BW, deBruyn B, Lovin DD, Hemme RR, Mori A, Romero-Severson J, Severson DW (2011) Global cross-talk of genes of the mosquito Aedes aegypti in response to dengue virus infection. PLoS Negl Trop Dis 5:e1385

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, Drake JM, Brownstein JS, Hoen AG, Sankoh O, Myers MF, George DB, Jaenisch T, Wint GR, Simmons CP, Scott TW, Farrar JJ, Hay SI (2013) The global distribution and burden of dengue. Nature 496:504–507

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bossi L, Ruth JR (1980) The influence of codon context on genetic code translation. Nature 286:123–127

    Article  PubMed  CAS  Google Scholar 

  • Buckingham RH (1990) Codon context. Experientia 46:1126–1133

    Article  PubMed  CAS  Google Scholar 

  • Buckingham RH (1994) Codon context and protein synthesis: enhancements of the genetic code. Biochimie 76:351–354

    Article  PubMed  CAS  Google Scholar 

  • Camiolo S, Farina L, Porceddu A (2012) The relation of codon bias to tissue-specific gene expression in Arabidopsis thaliana. Genetics 192:641–649

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Center for Disease Control and Prevention (2013) West Nile virus in the United States: guidelines for surveillance, prevention, and control. http://www.cdc.gov/ncidod/dvbid/westnile/mosquitospecies.htm. Accessed 21 Dec 2013

  • Chauhan C, Behura SK, Debruyn B, Lovin DD, Harker BW, Gomez-Machorro C, Mori A, Romero-Severson J, Severson DW (2012) Comparative expression profiles of midgut genes in dengue virus refractory and susceptible Aedes aegypti across critical period for virus infection. PLoS One 7:e47350

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Coleman JR, Papamichail D, Skiena S, Futcher B, Wimmer E, Mueller S (2008) Virus attenuation by genome-scale changes in codon pair bias. Science 320:1784–1787

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Colpitts TM, Cox J, Vanlandingham DL, Feitosa FM, Cheng G, Kurscheid S, Wang P, Krishnan MN, Higgs S, Fikrig E (2011) Alterations in the Aedes aegypti transcriptome during infection with West Nile, dengue and yellow fever viruses. PLoS Pathog 7:e1002189

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Cook S, Bennett SN, Holmes EC, De Chesse R, Moureau G, de Lamballerie X (2006) Isolation of a new strain of the flavivirus cell fusing agent virus in a natural mosquito population from Puerto Rico. J Gen Virol 87:735–748

    Article  PubMed  CAS  Google Scholar 

  • de Hoon MJ, Imoto S, Nolan J, Miyano S (2004) Open source clustering software. Bioinformatics 20:1453–1454

    Article  PubMed  Google Scholar 

  • Gardner CL, Ryman KD (2010) Yellow fever: a reemerging threat. Clin Lab Med 30:237–260

    Article  PubMed  Google Scholar 

  • Girard YA, Mayhew GF, Fuchs JF, Li H, Schneider BS, McGee CE, Rocheleau TA, Helmy H, Christensen BM, Higgs S, Bartholomay LC (2010) Transcriptome changes in Culex quinquefasciatus (Diptera: Culicidae) salivary glands during West Nile virus. J Med Entomol 47:421–435

    Article  PubMed  CAS  Google Scholar 

  • Gould EA, Solomon T (2008) Pathogenic flaviviruses. Lancet 371:500–509

    Article  PubMed  CAS  Google Scholar 

  • Gupta N, Aggarwal S (2008) MIBiClus: mutual Information based biclustering algorithm. Int J Comput Sci 3:2

    Google Scholar 

  • Guzman MG, Halstead SB, Artsob H, Buchy P, Farrar J, Gubler DJ, Hunsperger E, Kroeger A, Margolis HS, Martínez E, Nathan MB, Pelegrino JL, Simmons C, Yoksan S, Peeling RW (2010) Dengue: a continuing global threat. Nat Rev Microbiol 8:S7–S16

    Article  PubMed  CAS  Google Scholar 

  • Hayes EB, Sejvar JJ, Zaki SR, Lanciotti RS, Bode AV, Campbell GL (2005) Virology, pathology, and clinical manifestations of West Nile virus disease. Emerg Infect Dis 11:1174–1179

    Article  PubMed  PubMed Central  Google Scholar 

  • Heinz FX, Stiasny K (2012) Flaviviruses and flavivirus vaccines. Vaccine 30:4301–4306

    Article  PubMed  CAS  Google Scholar 

  • Hsieh SC, Liu IJ, King CC, Chang GJ, Wang WK (2008) A strong endoplasmic reticulum retention signal in the stem-anchor region of envelope glycoprotein of dengue virus type 2 affects the production of virus-like particles. Virology 374:338–350

    Article  PubMed  CAS  Google Scholar 

  • Irwin B, Heck JD, Hatfield GW (1995) Codon pair utilization biases influence translational elongation step times. J Biol Chem 270:22801–22806

    Article  PubMed  CAS  Google Scholar 

  • Lobo FP, Mota BE, Pena SD, Azevedo V, Macedo AM, Tauch A, Machado CR, Franco GR (2009) Virus-host coevolution: common patterns of nucleotide motif usage in Flaviviridae and their hosts. PLoS One 4:e6282

    Article  PubMed  PubMed Central  Google Scholar 

  • Mackenzie JS, Gubler DJ, Petersen LR (2004) Emerging flaviviruses: the spread and resurgence of Japanese encephalitis, West Nile and dengue viruses. Nat Med 10:S98–S109

    Article  PubMed  CAS  Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    PubMed  CAS  Google Scholar 

  • Moura G, Pinheiro M, Silva R, Miranda I, Afreixo V, Dias G, Freitas A, Oliveira JL, Santos MA (2005) Comparative context analysis of codon pairs on an ORFeome scale. Genome Biol 6:R28

    Article  PubMed  PubMed Central  Google Scholar 

  • Moura G, Pinheiro M, Arrais J, Gomes AC, Carreto L, Freitas A, Oliveira JL, Santos MA (2007) Large scale comparative codon-pair context analysis unveils general rules that fine-tune evolution of mRNA primary structure. PLoS One 2:e847

    Article  PubMed  PubMed Central  Google Scholar 

  • Mueller S, Papamichail D, Coleman JR, Skiena S, Wimmer E (2006) Reduction of the rate of poliovirus protein synthesis through large-scale codon deoptimization causes attenuation of viral virulence by lowering specific infectivity. J Virol 80:9687–9696

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Najafabadi HS, Salavati R (2008) Sequence-based prediction of protein–protein interactions by means of codon usage. Genome Biol 9:R87

    Article  PubMed  PubMed Central  Google Scholar 

  • Najafabadi HS, Goodarzi H, Salavati R (2009) Universal function-specificity of codon usage. Nucleic Acids Res 37:7014–7023

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Novoa EM, Ribas de Pouplana L (2012) Speeding with control: codon usage, tRNAs, and ribosomes. Trends Genet 28:574–581

    Article  PubMed  CAS  Google Scholar 

  • Pugachev KV, Guirakhoo F, Monath TP (2005) New developments in flavivirus vaccines with special attention to yellow fever. Curr Opin Infect Dis 18:387–394

    Article  PubMed  Google Scholar 

  • Ramirez JL, Dimopoulos G (2010) The Toll immune signaling pathway control conserved anti-dengue defenses across diverse Ae. aegypti strains and against multiple dengue virus serotypes. Dev Comp Immunol 34:625–629

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Rocha EP (2004) Codon usage bias from tRNA’s point of view: redundancy, specialization, and efficient decoding for translation optimization. Genome Res 14:2279–2286

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Rodriguez O, Singh BK, Severson DW, Behura SK (2012) Translational selection of genes coding for perfectly conserved proteins among three mosquito vectors. Infect Genet Evol 12:1535–1542

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Rossi SL, Ross TM, Evans JD (2010) West Nile virus. Clin Lab Med 30:47–65

    Article  PubMed  PubMed Central  Google Scholar 

  • Sim S, Dimopoulos G (2010) Dengue virus inhibits immune responses in Aedes aegypti cells. PLoS One 5:e10678

    Article  PubMed  PubMed Central  Google Scholar 

  • Solomon T, Mallewa M (2001) Dengue and other emerging flaviviruses. J Infect 42:104–115

    Article  PubMed  CAS  Google Scholar 

  • Souza-Neto JA, Sim S, Dimopoulos G (2009) An evolutionary conserved function of the JAK-STAT pathway in anti-dengue defense. Proc Natl Acad Sci USA 106:17841–17846

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Suthar MS, Diamond MS, Gale M Jr (2013) West Nile virus infection and immunity. Nat Rev Microbiol 11:115–128

    Article  PubMed  CAS  Google Scholar 

  • Turell MJ, O’Guinn ML, Dohm DJ, Jones JW (2001) Vector competence of North American mosquitoes (Diptera: Culicidae) for West Nile virus. J Med Entomol 8:130–134

    Article  Google Scholar 

  • Vanlandingham DL, McGee CE, Klinger KA, Vessey N, Fredregillo C, Higgs S (2007) Relative susceptibilties of South Texas mosquitoes to infection with West Nile virus. Am J Trop Med Hyg 77:925–928

    PubMed  Google Scholar 

  • Xi Z, Ramirez JL, Dimopoulos G (2008) The Aedes aegypti toll pathway controls dengue virus infection. PLoS Pathog 4:e1000098

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Casey Hill for critically reading the manuscript. This study was supported in part from grant RO3-TW008138, Fogarty International Research Collaboration Award (FIRCA), National Institutes of Health (NIH), USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David W. Severson.

Additional information

Communicated by S. Hohmann.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behura, S.K., Severson, D.W. Bicluster pattern of codon context usages between flavivirus and vector mosquito Aedes aegypti: relevance to infection and transcriptional response of mosquito genes. Mol Genet Genomics 289, 885–894 (2014). https://doi.org/10.1007/s00438-014-0857-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-014-0857-x

Keywords

Navigation