Skip to main content
Log in

Negative regulation of MAP kinase signaling in Drosophila by Ptp61F/PTP1B

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

PTP1B is an important negative regulator of insulin and other signaling pathways in mammals. However, the role of PTP1B in the regulation of RAS-MAPK signaling remains open to deliberation, due to conflicting evidence from different experimental systems. The Drosophila orthologue of mammalian PTP1B, PTP61F, has until recently remained largely uncharacterized. To establish the potential role of PTP61F in the regulation of signaling pathways in Drosophila and particularly to help resolve its fundamental function in RAS-MAPK signaling, we generated a new allele of Ptp61F as well as employed both RNA interference and overexpression alleles. Our results validate recent data showing that the activity of insulin and Abl kinase signaling is increased in Ptp61F mutants and RNA interference lines. Importantly, we establish negative regulation of the RAS/MAPK pathway by Ptp61F activity in whole animals. Of particular interest, our results document the modulation of hyperactive MAP kinase activity by Ptp61F alleles, showing that the phosphatase intervenes to directly or indirectly regulate MAP kinase itself.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andersen JN, Mortensen OH, Peters GH, Drake PG, Iversen LF, Olsen OH, Jansen PG, Andersen HS, Tonks NK, Moller NP (2001) Structural and evolutionary relationships among protein tyrosine phosphatase domains. Mol Cell Biol 21(21):7117–7136. doi:10.1128/MCB.21.21.7117-7136.2001

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Baeg GH, Zhou R, Perrimon N (2005) Genome-wide RNAi analysis of JAK/STAT signaling components in Drosophila. Genes Dev 19(16):1861–1870. doi:10.1101/gad.1320705

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Baker NE, Rubin GM (1989) Effect on eye development of dominant mutations in Drosophila homologue of the EGF receptor. Nature 340:150–153

    Article  PubMed  CAS  Google Scholar 

  • Baker NE, Rubin GM (1992) Ellipse mutations in the Drosophila homologue of the EGF receptor affect pattern formation, cell division and cell death in eye imaginal discs. Dev Bio 150:381–396

    Article  CAS  Google Scholar 

  • Bentires-Alj M, Neel BG (2007) Protein-tyrosine phosphatase 1B is required for HER2/Neu-induced breast cancer. Cancer Res 67(6):2420–2424

    Article  PubMed  CAS  Google Scholar 

  • Bjorge JD, Pang A, Fujita DJ (2000) Identification of protein-tyrosine phosphatase 1B as the major tyrosine phosphatase activity capable of dephosphorylating and activating c-Src in several human breast cancer cell lines. J Biol Chem 275(52):41439–41446. doi:10.1074/jbc.M004852200

    Article  PubMed  CAS  Google Scholar 

  • Blanquart C, Karouri SE, Issad T (2009) Implication of protein tyrosine phosphatase 1B in MCF-7 cell proliferation and resistance to 4-OH tamoxifen. Biochem Biophys Res Commun 387(4):748–753. doi:10.1016/j.bbrc.2009.07.105

    Article  PubMed  CAS  Google Scholar 

  • Blanquart C, Karouri SE, Issad T (2010) Protein tyrosine phosphatase-1B and T-cell protein tyrosine phosphatase regulate IGF-2-induced MCF-7 cell migration. Biochem Biophys Res Commun 392(1):83–88. doi:10.1016/j.bbrc.2009.12.176

    Article  PubMed  CAS  Google Scholar 

  • Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118(2):401–415

    PubMed  CAS  Google Scholar 

  • Brown-Shimer S, Johnson KA, Hill DE, Bruskin AM (1992) Effect of protein tyrosine phosphatase 1B expression on transformation by the human neu oncogene. Cancer Res 52(2):478–482

    PubMed  CAS  Google Scholar 

  • Brunner D, Oellers N, Szabad J, Biggs WHI, Zipursky SL, Hafen E (1994) A gain of function mutation in Drosophila MAP kinase activates multiple receptor tyrosine kinase signalling pathways. Cell 76(5):875–888

    Article  PubMed  CAS  Google Scholar 

  • Buszard BJ, Johnson TK, Meng TC, Burke R, Warr CG, Tiganis T (2013) The nucleus- and endoplasmic reticulum-targeted forms of protein tyrosine phosphatase 61F regulate Drosophila growth, life span, and fecundity. Mol Cell Biol 33(7):1345–1356. doi:10.1128/MCB.01411-12

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chang YC, Lin SY, Liang SY, Pan KT, Chou CC, Chen CH, Liao CL, Khoo KH, Meng TC (2008) Tyrosine phosphoproteomics and identification of substrates of protein tyrosine phosphatase dPTP61F in Drosophila S2 cells by mass spectrometry-based substrate trapping strategy. J Proteome Res 7(3):1055–1066. doi:10.1021/pr700801p

    Article  PubMed  CAS  Google Scholar 

  • Cicirelli MF, Tonks NK, Diltz CD, Weiel JE, Fischer EH, Krebs EG (1990) Microinjection of a protein-tyrosine-phosphatase inhibits insulin action in Xenopus oocytes. Proc Natl Acad Sci USA 87(14):5514–5518

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Clemens JC, Ursuliak Z, Clemens KK, Price JV, Dixon JE (1996) A Drosophila protein-tyrosine phosphatase associates with an adapter protein required for axonal guidance. J Biol Chem 271(29):17002–17005

    Article  PubMed  CAS  Google Scholar 

  • Dube N, Cheng A, Tremblay ML (2004) The role of protein tyrosine phosphatase 1B in Ras signaling. Proc Natl Acad Sci USA 101(7):1834–1839. doi:10.1073/pnas.03042421010304242101

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Dubé N, Bourdeau A, Heinonen KM, Cheng A, Loy AL, Tremblay ML (2005) Genetic ablation of protein tyrosine phosphatase 1B accelerates lymphomagenesis of p53-null mice through the regulation of B-cell development. Cancer Res 65(21):10088–10095

    Article  PubMed  Google Scholar 

  • Elchebly M, Payette P, Michaliszyn E, Cromlish W, Collins S, Loy AL, Normandin D, Cheng A, Himms-Hagen J, Chan CC, Ramachandran C, Gresser MJ, Tremblay ML, Kennedy BP (1999) Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science 283(5407):1544–1548

    Article  PubMed  CAS  Google Scholar 

  • Fitzpatrick KA, Gorski SM, Ursuliak Z, Price JV (1995) Expression of protein tyrosine phosphatase genes during oogenesis in Drosophila melanogaster. Mech Dev 53(2):171–183. pii:0925-4773(95)00432-Z

    Article  PubMed  CAS  Google Scholar 

  • Flint AJ, Tiganis T, Barford D, Tonks NK (1997) Development of “substrate-trapping” mutants to identify physiological substrates of protein tyrosine phosphatases. Proc Natl Acad Sci USA 94(5):1680–1685

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Fortini ME, Simon MA, Rubin GM (1992) Signalling by the sevenless protein tyrosine kinase is mimicked by Ras1 activation. Nature 355:559–561

    Article  PubMed  CAS  Google Scholar 

  • Frangioni JV, Beahm PH, Shifrin V, Jost CA, Neel BG (1992) The nontransmembrane tyrosine phosphatase PTP-1B localizes to the endoplasmic reticulum via its 35 amino acid C-terminal sequence. Cell 68(3):545–560 pii:0092-8674(92)90190-N

    Article  PubMed  CAS  Google Scholar 

  • Galic S, Hauser C, Kahn BB, Haj FG, Neel BG, Tonks NK, Tiganis T (2005) Coordinated regulation of insulin signaling by the protein tyrosine phosphatases PTP1B and TCPTP. Mol Cell Biol 25(2):819–829. doi:10.1128/MCB.25.2.819-829.2005

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Golembo M, Schweitzer R, Freeman M, Shilo BZ (1996) argos transcription is induced by the Drosophila EGF receptor pathway to form an inhibitory feedback loop. Development 122:223–230

    PubMed  CAS  Google Scholar 

  • Gum RJ, Gaede LL, Heindel MA, Waring JF, Trevillyan JM, Zinker BA, Stark ME, Wilcox D, Jirousek MR, Rondinone CM, Ulrich RG (2003) Antisense protein tyrosine phosphatase 1B reverses activation of p38 mitogen-activated protein kinase in liver of ob/ob mice. Mol Endocrinol 17(6):1131–1143. doi:10.1210/me.2002-0288

    Article  PubMed  CAS  Google Scholar 

  • Haj FG, Verveer PJ, Squire A, Neel BG, Bastiaens PI (2002) Imaging sites of receptor dephosphorylation by PTP1B on the surface of the endoplasmic reticulum. Science 295(5560):1708–1711. doi:10.1126/science.1067566

    Article  PubMed  CAS  Google Scholar 

  • Haj FG, Markova B, Klaman LD, Bohmer FD, Neel BG (2003) Regulation of receptor tyrosine kinase signaling by protein tyrosine phosphatase-1B. J Biol Chem 278(2):739–744. doi:10.1074/jbc.M210194200

    Article  PubMed  CAS  Google Scholar 

  • Haj FG, Zabolotny JM, Kim YB, Kahn BB, Neel BG (2005) Liver-specific protein-tyrosine phosphatase 1B (PTP1B) re-expression alters glucose homeostasis of PTP1B-/-mice. J Biol Chem 280(15):15038–15046. doi:10.1074/jbc.M413240200

    Article  PubMed  CAS  Google Scholar 

  • Heinonen KM, Dubé N, Bourdeau A, Lapp WS, Tremblay ML (2006) Protein tyrosine phosphatase 1B negatively regulates macrophage development through CSF-1 signaling. Proc Natl Acad Sci USA 103(8):2776–2781

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Huang CH, Lin TY, Pan RL, Juang JL (2007) The involvement of Abl and PTP61F in the regulation of Abi protein localization and stability and lamella formation in Drosophila S2 cells. J Biol Chem 282(44):32442–32452. doi:10.1074/jbc.M702583200

    Article  PubMed  CAS  Google Scholar 

  • Julien SG, Dube N, Read M, Penney J, Paquet M, Han Y, Kennedy BP, Muller WJ, Tremblay ML (2007) Protein tyrosine phosphatase 1B deficiency or inhibition delays ErbB2-induced mammary tumorigenesis and protects from lung metastasis. Nat Genet 39(3):338–346. doi:10.1038/ng1963

    Article  PubMed  CAS  Google Scholar 

  • Kenner KA, Anyanwu E, Olefsky JM, Kusari J (1996) Protein-tyrosine phosphatase 1B is a negative regulator of insulin- and insulin-like growth factor-I-stimulated signaling. J Biol Chem 271(33):19810–19816

    Article  PubMed  CAS  Google Scholar 

  • Klaman LD, Boss O, Peroni OD, Kim JK, Martino JL, Zabolotny JM, Moghal N, Lubkin M, Kim YB, Sharpe AH, Stricker-Krongrad A, Shulman GI, Neel BG, Kahn BB (2000) Increased energy expenditure, decreased adiposity, and tissue-specific insulin sensitivity in protein-tyrosine phosphatase 1B-deficient mice. Mol Cell Biol 20(15):5479–5489

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ku HY, Wu CL, Rabinow L, Chen GC, Meng TC (2009) Organization of F-actin via concerted regulation of Kette by PTP61F and dAbl. Mol Cell Biol 29(13):3623–3632. doi:10.1128/MCB.00229-09

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lessard L, Stuible M, Tremblay ML (2010) The two faces of PTP1B in cancer. Biochim Biophys Acta 1804(3):613–619. doi:10.1016/j.bbapap.2009.09.018

    Article  PubMed  CAS  Google Scholar 

  • Liu F, Sells MA, Chernoff J (1998) Transformation suppression by protein tyrosine phosphatase 1B requires a functional SH3 ligand. Mol Cell Biol 18(1):250–259

    PubMed  CAS  PubMed Central  Google Scholar 

  • McLaughlin S, Dixon JE (1993) Alternative splicing gives rise to a nuclear protein tyrosine phosphatase in Drosophila. J Biol Chem 268(10):6839–6842

    PubMed  CAS  Google Scholar 

  • Monteleone MC, Gonzalez Wusener AE, Burdisso JE, Conde C, Caceres A, Arregui CO (2012) ER-bound protein tyrosine phosphatase PTP1B interacts with Src at the plasma membrane/substrate interface. PLoS ONE 7(6):e38948. doi:10.1371/journal.pone.0038948

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Muda M, Worby CA, Simonson-Leff N, Clemens JC, Dixon JE (2002) Use of double-stranded RNA-mediated interference to determine the substrates of protein tyrosine kinases and phosphatases. Biochem J 366(Pt 1):73–77. doi:10.1042/BJ20020298

    PubMed  CAS  PubMed Central  Google Scholar 

  • Muller P, Kuttenkeuler D, Gesellchen V, Zeidler MP, Boutros M (2005) Identification of JAK/STAT signalling components by genome-wide RNA interference. Nature 436(7052):871–875. doi:10.1038/nature03869

    Article  PubMed  Google Scholar 

  • Myers MP, Andersen JN, Cheng A, Tremblay ML, Horvath CM, Parisien JP, Salmeen A, Barford D, Tonks NK (2001) TYK2 and JAK2 are substrates of protein-tyrosine phosphatase 1B. J Biol Chem 276(51):47771–47774. doi:10.1074/jbc.C100583200

    PubMed  CAS  Google Scholar 

  • Rorth P, Szabo K, Bailey A, Laverty T, Rehm J, Rubin G, Weigmann K, Milan M, Benes V, Ansorge W, Cohen S (1998) Systematic gain-of-function genetics in Drosophila. Development 125(6):1049–1057

    PubMed  CAS  Google Scholar 

  • Roskoski R (2012) ERK1/2 MAP kinases: structure, function, and regulation. Pharmacol Res 66(2):105–143

    Article  PubMed  CAS  Google Scholar 

  • Schweitzer R, Howes R, Smith R, Shilo BZ, Freeman M (1995) Inhibition of Drosophila EGF receptor activation by the secreted protein Argos. Nature 376(6542):699–702. doi:10.1038/376699a0

    Article  PubMed  CAS  Google Scholar 

  • Shimizu S, Maegawa H, Egawa K, Shi K, Bryer-Ash M, Kashiwagi A (2002) Mechanism for differential effect of protein-tyrosine phosphatase 1B on Akt versus mitogen-activated protein kinase in 3T3-L1 adipocytes. Endocrinology 143(12):4563–4569

    Article  PubMed  CAS  Google Scholar 

  • Tiganis T, Bennett AM (2007) Protein tyrosine phosphatase function: the substrate perspective. Biochem J 402(1):1–15

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Tiganis T, Bennett AM, Ravichandran KS, Tonks NK (1998) Epidermal growth factor receptor and the adaptor protein p52Shc are specific substrates of T-cell protein tyrosine phosphatase. Mol Cell Biol 18(3):1622–1634

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ursuliak Z, Clemens JC, Dixon JE, Price JV (1997) Differential accumulation of DPTP61F alternative transcripts: regulation of a protein tyrosine phosphatase by segmentation genes. Mech Dev 65(1–2):19–30

    Article  PubMed  CAS  Google Scholar 

  • Wei HC, Shu H, Price JV (2003) Functional genomic analysis of the 61D-61F region of the third chromosome of Drosophila melanogaster. Genome 46(6):1049–1058. doi:10.1139/g03-081

    Article  PubMed  CAS  Google Scholar 

  • Wiener JR, Kerns BJ, Harvey EL, Conaway MR, Iglehart JD, Berchuck A, Bast RCJ (1994) Overexpression of the protein tyrosine phosphatase PTP1B in human breast cancer: association with p185c-erbB-2 protein expression. J Natl Cancer Inst 86(5):372–378

    Article  PubMed  CAS  Google Scholar 

  • Wu CL, Buszard B, Teng CH, Chen WL, Warr CG, Tiganis T, Meng TC (2011) Dock/Nck facilitates PTP61F/PTP1B regulation of insulin signalling. Biochem J 439(1):151–159. doi:10.1042/BJ20110799

    Article  PubMed  CAS  Google Scholar 

  • Zabolotny JM, Haj FG, Kim YB, Kim HJ, Shulman GI, Kim JK, Neel BG, Kahn BB (2004) Transgenic overexpression of protein-tyrosine phosphatase 1B in muscle causes insulin resistance, but overexpression with leukocyte antigen-related phosphatase does not additively impair insulin action. J Biol Chem 279(23):24844–24851. doi:10.1074/jbc.M310688200

    Article  PubMed  CAS  Google Scholar 

  • Zhai YF, Beittenmiller H, Wang B, Gould MN, Oakley C, Esselman WJ, Welsch CW (1993) Increased expression of specific protein tyrosine phosphatases in human breast epithelial cells neoplastically transformed by the neu oncogene. Cancer Res 53(10 Suppl):2272–2278

    PubMed  CAS  Google Scholar 

  • Zhang S, Zhang ZY (2007) PTP1B as a drug target: recent developments in PTP1B inhibitor discovery. Drug Discov Today 12(9–10):373–381

    Article  PubMed  CAS  Google Scholar 

  • Zhou B, Wang ZX, Zhao Y, Brautigan DL, Zhang ZY (2002) The specificity of extracellular signal-regulated kinase 2 dephosphorylation by protein phosphatases. J Biol Chem 277(35):31818–31825. doi:10.1074/jbc.M203969200

    Article  PubMed  CAS  Google Scholar 

  • Zhu S, Bjorge JD, Fujita DJ (2007) PTP1B contributes to the oncogenic properties of colon cancer cells through Src activation. Cancer Res 67(21):10129–10137

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Drosophila stocks were graciously provided by Norbert Perrimon and Rich Binari, Marc Halfon, the Indiana University Drosophila stock center, the Drosophila Genetic Resource Center, Kyoto Japan, and the Vienna Drosophila RNAi Center. François Brisset, CNRS-ICCMO, Univ. Paris Sud, Orsay, was of invaluable help in preparing the scanning electron micrographs. We also thank Bernadette Wiszniowski for help with Drosophila stocks, and particularly thank Jaesob Kim for help in obtaining the GE29087 P-element insertion in Ptp61F. Funding was provided by the Université de Paris Sud and the CNRS. This work was submitted as partial requirement for completion of a doctoral thesis for S.T-N, who was supported by a fellowship from CoDDIM, Région Ile de France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonard Rabinow.

Additional information

Communicated by S. Hohmann.

Sequence data from this article have been deposited with the GenBank/EMBL data libraries under accession no. KF695424.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tchankouo-Nguetcheu, S., Udinotti, M., Durand, M. et al. Negative regulation of MAP kinase signaling in Drosophila by Ptp61F/PTP1B. Mol Genet Genomics 289, 795–806 (2014). https://doi.org/10.1007/s00438-014-0852-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-014-0852-2

Keywords

Navigation