Skip to main content
Log in

Bridging the gaps in systems biology

  • Review
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Systems biology aims at creating mathematical models, i.e., computational reconstructions of biological systems and processes that will result in a new level of understanding—the elucidation of the basic and presumably conserved “design” and “engineering” principles of biomolecular systems. Thus, systems biology will move biology from a phenomenological to a predictive science. Mathematical modeling of biological networks and processes has already greatly improved our understanding of many cellular processes. However, given the massive amount of qualitative and quantitative data currently produced and number of burning questions in health care and biotechnology needed to be solved is still in its early phases. The field requires novel approaches for abstraction, for modeling bioprocesses that follow different biochemical and biophysical rules, and for combining different modules into larger models that still allow realistic simulation with the computational power available today. We have identified and discussed currently most prominent problems in systems biology: (1) how to bridge different scales of modeling abstraction, (2) how to bridge the gap between topological and mechanistic modeling, and (3) how to bridge the wet and dry laboratory gap. The future success of systems biology largely depends on bridging the recognized gaps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott A (2010) Germans cook up liver project. Nature 468:879

    Article  PubMed  CAS  Google Scholar 

  • Agren R, Bordel S, Mardinoglu A, Pornputtapong N, Nookaew I, Nielsen J (2012) Reconstruction of genome-scale active metabolic networks for 69 human cell types and 16 cancer types using INIT. PLoS Comput Biol 8(5):e1002518

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Alberghina L, Cirulli C (2010) Proteomics and systems biology to tackle biological complexity: yeast as a case study. Proteomics 24:4337–4341

    Article  Google Scholar 

  • Barberis M, Klipp E, Vanoni M, Alberghina L (2007) Cell size at S phase initiation: an emergent property of the G1/S network. PLoS Comput Biol 3(4):e64

    Article  PubMed  PubMed Central  Google Scholar 

  • Bar-Shalom Y, Rong Li X, Kirubarajan T (2001) Estimation with applications to tracking and navigation. Wiley-Interscience, Hoboken

    Book  Google Scholar 

  • Barth T, Chan T, Haimes R (2001) Multiscale and multiresolution methods: theory and applications. Springer, New York

    Google Scholar 

  • Bassingthwaighte J, Hunter P, Noble D (2009) The cardiac physiome: perspectives for the future. Exp Physiol 94:597–605

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chang A, Scheer M, Grote A, Schomburg I, Schomburg D (2008) BRENDA, AMENDA and FRENDA the enzyme information system: new content and tools in 2009. Nucl Acids Res 37:D588–D592

    Article  PubMed  PubMed Central  Google Scholar 

  • Cotterell J, Sharp J (2010) An atlas of gene regulatory networks reveals multiple three-gene mechanisms for interpreting morphogen gradients. Mol Syst Biol 6:425

    Article  PubMed  PubMed Central  Google Scholar 

  • Cvijovic M, Olivares-Hernández R, Agren R, Dahr N, Vongsangnak W, Nookaew I, Patil KR, Nielsen J (2010) BioMet toolbox: genome-wide analysis metabolism. Nucl Acid Res 38:W144–W149

    Article  CAS  Google Scholar 

  • Erjavec N, Cvijovic M, Klipp E, Nyström T (2008) Selective benefits of damage partitioning in unicellular systems and its effects on aging. Proc Natl Acad Sci USA 105(48):18764–18769

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Flöttmann M, Schaber J, Hoops S, Klipp E, Mendes P (2008) ModelMage: a tool for automatic model generation, selection and management. Genome Inf 20:52–63

    Article  Google Scholar 

  • Hucka M, Finney A, Sauro H, Bolouri H, Doyle JC, Kitano H, Arkin AP, Bornstein BJ, Bray D, Cornish-Bowden A, Cuellar AA, Dronov S, Gilles ED, Ginkel M, Gor V, Goryanin II, Hedley WJ, Hodgman TC, Hofmey JH, Hunter PJ et al (2003) The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19:524–531

    Article  PubMed  CAS  Google Scholar 

  • Jansson A, Jirstrand M (2010) Biochemical modeling with systems biology graphical notation. Drug Discov Today 15(9–10):365–370

    Article  PubMed  CAS  Google Scholar 

  • Jazwinski AH (1970) Stochastic processes and filtering theory. Academic Press, New York

    Google Scholar 

  • Jol SJ, Kümmel A, Terzer M, Stelling J, Heinemann M (2012) System-level insights into yeast metabolism by thermodynamic analysis of elementary flux modes. PLoS Comput Biol 8(3):e1002415

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Jörnsten R, Abenius T, Kling T, Schmidt L, Johansson E, Nordling TE, Nordlander B, Sander C, Gennemark P, Funa K, Nilsson B, Lindahl L, Nelander S (2011) Network modeling of the transcriptional effects of copy number aberrations in glioblastoma. Mol Syst Biol 7:486

    Article  PubMed  PubMed Central  Google Scholar 

  • Klipp E, Nordlander B, Krüger R, Gennemark P, Hohmann S (2005) Integrative model of the response of yeast to osmotic shock. Nat Biotech 23(8):975–982

    Article  CAS  Google Scholar 

  • Kloeden PE, Platen E (1992) Numerical solution of stochastic differential equations. Springer-Verlag, New York

    Book  Google Scholar 

  • Kotte O, Zaugg JB, Heinemann M (2010) Bacterial adaptation through distributed sensing of metabolic fluxes. Mol Syst Biol 6:355

    Article  PubMed  PubMed Central  Google Scholar 

  • Krantz M, Ahmadpour D, Ottosson LG, Warringer J, Waltermann C, Nordlander B, Klipp E, Blomberg A, Hohmann S, Kitano H (2009) Robustness and fragility in the yeast high osmolarity glycerol (HOG) signal-transduction pathway. Mol Syst Biol 5:281

    Article  PubMed  PubMed Central  Google Scholar 

  • Krause F, Uhlendorf J, Lubitz T, Schulz M, Klipp E, Liebermeister W (2010) Annotation and merging of SBML models with semanticSBML. Bioinformatics 26:421–422

    Article  PubMed  CAS  Google Scholar 

  • Kuepfer L, Peter M, Sauer U, Stelling J (2007) Ensemble modeling for analysis of cell signaling dynamics. Nat Biotech 25(9):1001–1006

    Article  CAS  Google Scholar 

  • Kümmel A, Panke S, Heinemann M (2006) Putative regulatory sites unraveled network-embedded thermodynamic analysis of metabolome data. Mol Syst Biol 2(2006):0034

    PubMed  Google Scholar 

  • Le Novère N, Bornstein B, Broicher A, Courtot M, Donizelli M, Dharuri H, Li L, Sauro H, Schilstra M, Shapiro B, Snoep J, Hucka M (2006) BioModels database: a free, centralized database of curated, published, quantitative kinetic models of biochemical and cellular systems. Nucl Acid Res 34:D689–D691

    Article  Google Scholar 

  • Le Novère N, Hucka M, Mi H, Moodie S, Schreiber F, Sorokin A, Demir E, Wegner K, Aladjem MI, Wimalaratne SM, Bergman FT, Gauges R, Ghazal P, Kawaji H, Li L, Matsuoka Y, Villéger A, Boyd SE, Calzone L, Courtot M et al (2009) The systems biology graphical notation. Nat Biotech 27(8):735–741

    Article  Google Scholar 

  • Liebermeister W (2008) Validity and combination of biochemical models. In Proceedings of 3rd International ESCEC workshop on experimental standard conditions on enzyme characterizations, Beilstein Institute, Frankfurt

  • Liebermeister W, Klipp E (2006) Bringing metabolic networks to life: integration of kinetic, metabolic, and proteomic data. Theor Biol Med Mode 3:42

    Article  Google Scholar 

  • Lloyd C, Lawson J, Hunter P, Nielsen P (2008) The CellML model repository. Bioinformatics 24:2122–2123

    Article  PubMed  CAS  Google Scholar 

  • Lubitz T, Schulz M, Klipp E, Liebermeister W (2010) Parameter balancing in kinetic models of cell metabolism. J Phys Chem B 114(49):16298–16303

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Mišković L, Hatzimanikatis V (2011) Modeling of uncertainties in biochemical reactions. Biotechnol Bioeng. 108(2):413–423

    Article  PubMed  Google Scholar 

  • Nelander S, Wang W, Nilsson B, She QB, Pratilas C, Rosen N, Gennemark P, Sander C (2008) Models from experiments: combinatorial drug perturbations of cancer cells. Mol Syst Biol 4:216

    Article  PubMed  PubMed Central  Google Scholar 

  • Novak B, Tyson JJ, Gyorffy B, Csikasz-Nagy A (2007) Irreversible cell-cycle transitions are due to systems-level feedback. Nat Cell Biol 9(7):724–728

    Article  PubMed  CAS  Google Scholar 

  • Olivier B, Snoep J (2004) Web-based kinetic modelling using JWS online. Bioinformatics 20:2144

    Article  Google Scholar 

  • Parkinson H, Sarkans U, Kolesnikov N, Abeygunawardena N, Burdett T, Dylag M, Emam I, Farne A, Hastings E, Holloway E, Kurbatova N, Lukk M, Malone J, Mani R, Pilicheva E, Rustici G, Sharma A, Williams E, Adamusiak T, Brandizi M et al (2010) ArrayExpress update—an archive of microarray and high-throughput sequencing-based functional genomics experiments. Nucl Acid Res 39:D1002–D1004

    Article  Google Scholar 

  • Resat H, Petzold L, Pettigrew M (2009) Kinetic modeling of biological systems. Methods Mol Biol 541:311–335

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ristic B, Arulampalam S, Gordon Neil (2004) Beyond the Kalman filter: particle filters for tracking applications. Artech Print on Demand

  • Schaber J, Liebermeister W, Klipp E (2009) Nested uncertainties in biochemical models. IET Syst Biol 3(1):1–9

    Article  PubMed  CAS  Google Scholar 

  • Schulz M, Uhlendorf J, Klipp E, Liebermeister W (2006) SBMLmerge, a system for combining biochemical network models. Genome Inf 17:62–71

    CAS  Google Scholar 

  • Smallbone K, Simeonidis E, Swainston N, Mendes P (2010) Towards a genome-scale kinetic model of cellular metabolism. BMC Syst Biol 28(4):6

    Article  Google Scholar 

  • Smith L, Hucka M (2010) SBML level 3 hierarchical model composition, COMBINE 2010, informatics forum, University of Edinburgh, 09 Oct 2010

  • Southerna J, Pitt-Francisb J, Whiteley J, Stokeley D, Kobashid H, Nobes R, Kadookad Y, Gavaghan D (2008) Multi-scale computational modelling in biology and physiology. Prog Biophys Mol Biol 96:60–89

    Article  Google Scholar 

  • Stein L (2001) Genome annotation: from sequence to biology. Nat Rev Genet 2:493–501

    Article  PubMed  CAS  Google Scholar 

  • Taylor CF, Field D, Sansone SA, Aerts J, Apweiler R, Ashburner M, Ball CA, Binz PA, Bogue M, Booth T, Brazma A, Brinkman RR, Michael Clark A, Deutsch EW, Fiehn O, Fostel J, Ghazal P, Gibson F, Gray T, Grimes G et al (2009) Promoting coherent minimum reporting guidelines for biological and biomedical investigations: the MIBBI project. Nat Biotech 26(8):889–896

    Article  Google Scholar 

  • Tiger CF, Krause F, Cedersund G, Palmér R, Klipp E, Hohmann S, Kitano H, Krantz M (2012) A framework for mapping, visualisation and automatic model creation of signal-transduction networks. Mol Syst Biol 24(8):578

    Google Scholar 

  • Wang L, Birol I, Hatzimanikatis V (2004) Metabolic control analysis under uncertainty: framework development and case studies. Biophys J 87(6):3750–3763

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wingreen N, Botstein D (2006) Back to the future: education for systems-level biologists. Nat Rev Mol Cell Biol 7(11):829–832

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wittig U, Golebiewski M, Kania R, Krebs O, Mir S, Weidemann A, Anstein S, Saric J, Rojas I (2006) SABIO-RK: integration and curation of reaction kinetics data. Bioinformatics 4075:94–103 (Lecture notes)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the European Commission (Contract No. 223137, FutureSysBio).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marija Cvijovic.

Additional information

Communicated by J. Graw.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cvijovic, M., Almquist, J., Hagmar, J. et al. Bridging the gaps in systems biology. Mol Genet Genomics 289, 727–734 (2014). https://doi.org/10.1007/s00438-014-0843-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-014-0843-3

Keywords

Navigation