Skip to main content
Log in

Human testis-specific genes are under relaxed negative selection

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Recent studies have suggested that selective forces and constraints acting on genes varied during human evolution depending on the organ in which they are expressed. To gain insight into the evolution of organ determined negative selection forces, we compared the non-synonymous SNP diversity of genes expressed in different organs. Based on a HAPMAP dataset, we determined for each SNP its frequency in 11 human populations and, in each case, predicted whether or not the change it produces is deleterious. We have shown that, for all organs under study, SNPs predicted to be deleterious are present at a significantly lower frequency than SNPs predicted to be tolerated. However, testis-specific genes contain a higher proportion of deleterious SNPs than other organs. This study shows that negative selection is acting on the whole human genome, but that the action of negative selection is relaxed on testis-specific genes. This result adds to and expands the hypothesis of a recent evolutionary change in the human male reproductive system and its behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, Handsaker RE, Kang HM, Marth GT, McVean GA (2012) An integrated map of genetic variation from 1,092 human genomes. Nature 491(7422):56–65. doi:10.1038/nature11632

    Article  PubMed  Google Scholar 

  • Altshuler DM, Gibbs RA, Peltonen L, Dermitzakis E, Schaffner SF, Yu F, Bonnen PE, de Bakker PI, Deloukas P, Gabriel SB, Gwilliam R, Hunt S, Inouye M, Jia X, Palotie A, Parkin M, Whittaker P, Chang K, Hawes A, Lewis LR, Ren Y, Wheeler D, Muzny DM, Barnes C, Darvishi K, Hurles M, Korn JM, Kristiansson K, Lee C, McCarrol SA, Nemesh J, Keinan A, Montgomery SB, Pollack S, Price AL, Soranzo N, Gonzaga-Jauregui C, Anttila V, Brodeur W, Daly MJ, Leslie S, McVean G, Moutsianas L, Nguyen H, Zhang Q, Ghori MJ, McGinnis R, McLaren W, Takeuchi F, Grossman SR, Shlyakhter I, Hostetter EB, Sabeti PC, Adebamowo CA, Foster MW, Gordon DR, Licinio J, Manca MC, Marshall PA, Matsuda I, Ngare D, Wang VO, Reddy D, Rotimi CN, Royal CD, Sharp RR, Zeng C, Brooks LD, McEwen JE (2010) Integrating common and rare genetic variation in diverse human populations. Nature 467(7311):52–58

    Article  CAS  PubMed  Google Scholar 

  • Amigo J, Salas A, Phillips C, Carracedo A (2008) SPSmart: adapting population based SNP genotype databases for fast and comprehensive web access. BMC Bioinformatics 9:428. doi:10.1186/1471-2105-9-428

    Article  PubMed Central  PubMed  Google Scholar 

  • Barreiro LB, Laval G, Quach H, Patin E, Quintana-Murci L (2008) Natural selection has driven population differentiation in modern humans. Nat Genet 40(3):340–345

    Article  CAS  PubMed  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Royal Stat Soc Ser B 57:289–300

    Google Scholar 

  • Brawand D, Soumillon M, Necsulea A, Julien P, Csardi G, Harrigan P, Weier M, Liechti A, Aximu-Petri A, Kircher M, Albert FW, Zeller U, Khaitovich P, Grutzner F, Bergmann S, Nielsen R, Paabo S, Kaessmann H (2011) The evolution of gene expression levels in mammalian organs. Nature 478(7369):343–348. doi:10.1038/nature10532

    Article  CAS  PubMed  Google Scholar 

  • Capra JA, Pollard KS, Singh M (2010) Novel genes exhibit distinct patterns of function acquisition and network integration. Genome Biol 11(12):R127. doi:10.1186/gb-2010-11-12-r127

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Clark NL, Swanson WJ (2005) Pervasive adaptive evolution in primate seminal proteins. PLoS Genet 1(3):e35. doi:10.1371/journal.pgen.0010035

    Article  PubMed Central  PubMed  Google Scholar 

  • Clark AG, Hubisz MJ, Bustamante CD, Williamson SH, Nielsen R (2005) Ascertainment bias in studies of human genome-wide polymorphism. Genome Res 15(11):1496–1502. doi:10.1101/gr.4107905

    Article  CAS  PubMed  Google Scholar 

  • Conrad M, Friedlander C, Goodman M (1983) Evidence that natural selection acts on silent mutation. Biosystems 16(2):101–111

    Article  CAS  PubMed  Google Scholar 

  • Doron S, Shweiki D (2011) SNP uniqueness problem: a proof-of-principle in HapMap SNPs. Hum Mutat 32(4):355–357. doi:10.1002/humu.21429

    Article  CAS  PubMed  Google Scholar 

  • Fay JC, Wyckoff GJ, Wu CI (2001) Positive and negative selection on the human genome. Genetics 158(3):1227–1234

    CAS  PubMed  Google Scholar 

  • Flicek P, Amode MR, Barrell D, Beal K, Brent S, Chen Y, Clapham P, Coates G, Fairley S, Fitzgerald S, Gordon L, Hendrix M, Hourlier T, Johnson N, Kahari A, Keefe D, Keenan S, Kinsella R, Kokocinski F, Kulesha E, Larsson P, Longden I, McLaren W, Overduin B, Pritchard B, Riat HS, Rios D, Ritchie GR, Ruffier M, Schuster M, Sobral D, Spudich G, Tang YA, Trevanion S, Vandrovcova J, Vilella AJ, White S, Wilder SP, Zadissa A, Zamora J, Aken BL, Birney E, Cunningham F, Dunham I, Durbin R, Fernandez-Suarez XM, Herrero J, Hubbard TJ, Parker A, Proctor G, Vogel J, Searle SM (2011) Ensembl 2011. Nucleic Acids Res 39 (Database issue):D800-806. doi:10.1093/nar/gkq1064

  • George RD, McVicker G, Diederich R, Ng SB, MacKenzie AP, Swanson WJ, Shendure J, Thomas JH (2011) Trans genomic capture and sequencing of primate exomes reveals new targets of positive selection. Genome Res 21(10):1686–1694. doi:10.1101/gr.121327.111

    Article  CAS  PubMed  Google Scholar 

  • Gibson G (2012) Rare and common variants: twenty arguments. Nat Rev Genet 13(2):135–145. doi:10.1038/nrg3118

    Article  CAS  PubMed  Google Scholar 

  • Harcourt AH, Harvey PH, Larson SG, Short RV (1981) Testis weight, body weight and breeding system in primates. Nature 293(5827):55–57

    Article  CAS  PubMed  Google Scholar 

  • Hedrick PW (2007) Sex: differences in mutation, recombination, selection, gene flow, and genetic drift. Evolution 61(12):2750–2771. doi:10.1111/j.1558-5646.2007.00250.x

    Article  PubMed  Google Scholar 

  • Khaitovich P, Hellmann I, Enard W, Nowick K, Leinweber M, Franz H, Weiss G, Lachmann M, Paabo S (2005) Parallel patterns of evolution in the genomes and transcriptomes of humans and chimpanzees. Science 309(5742):1850–1854. doi:10.1126/science.1108296

    Article  CAS  PubMed  Google Scholar 

  • Khaitovich P, Enard W, Lachmann M, Paabo S (2006) Evolution of primate gene expression. Nat Rev Genet 7(9):693–702. doi:10.1038/nrg1940

    Article  CAS  PubMed  Google Scholar 

  • Kumar P, Henikoff S, Ng PC (2009) Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc 4(7):1073–1081. doi:10.1038/nprot.2009.86

    Article  CAS  PubMed  Google Scholar 

  • MacArthur DG, Balasubramanian S, Frankish A, Huang N, Morris J, Walter K, Jostins L, Habegger L, Pickrell JK, Montgomery SB, Albers CA, Zhang ZD, Conrad DF, Lunter G, Zheng H, Ayub Q, DePristo MA, Banks E, Hu M, Handsaker RE, Rosenfeld JA, Fromer M, Jin M, Mu XJ, Khurana E, Ye K, Kay M, Saunders GI, Suner MM, Hunt T, Barnes IH, Amid C, Carvalho-Silva DR, Bignell AH, Snow C, Yngvadottir B, Bumpstead S, Cooper DN, Xue Y, Romero IG, Wang J, Li Y, Gibbs RA, McCarroll SA, Dermitzakis ET, Pritchard JK, Barrett JC, Harrow J, Hurles ME, Gerstein MB, Tyler-Smith C (2012) A systematic survey of loss-of-function variants in human protein-coding genes. Science 335(6070):823–828. doi:10.1126/science.1215040

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Møller AP (1988) Ejaculate quality, testes size and sperm competition in primates. J Hum Evol 17(5):479–488

    Article  Google Scholar 

  • Nielsen R, Bustamante C, Clark AG, Glanowski S, Sackton TB, Hubisz MJ, Fledel-Alon A, Tanenbaum DM, Civello D, White TJ, J J, Adams MD, Cargill M (2005) A scan for positively selected genes in the genomes of humans and chimpanzees. PLoS Biol 3(6):e170. doi:10.1371/journal.pbio.0030170

    Article  PubMed Central  PubMed  Google Scholar 

  • Ohashi J, Naka I, Tsuchiya N (2011) The impact of natural selection on an ABCC11 SNP determining earwax type. Mol Biol Evol 28(1):849–857. doi:10.1093/molbev/msq264

    Article  CAS  PubMed  Google Scholar 

  • Osada N (2007) Inference of expression-dependent negative selection based on polymorphism and divergence in the human genome. Mol Biol Evol 24(8):1622–1626. doi:10.1093/molbev/msm080

    Article  CAS  PubMed  Google Scholar 

  • Pierron D, Letellier T, Grossman LI (2011a) Mitogroup: continent-specific clusters of mitochondrial OXPHOS complexes based on nuclear non-synonymous polymorphisms. Mitochondrion. doi:10.1016/j.mito.2011.09.005

    PubMed  Google Scholar 

  • Pierron D, Opazo JC, Heiske M, Papper Z, Uddin M, Chand G, Wildman DE, Romero R, Goodman M, Grossman LI (2011b) Silencing, positive selection and parallel evolution: busy history of primate cytochromes C. PLoS One 6(10):e26269. doi:10.1371/journal.pone.0026269

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pierron D, Cortes NG, Letellier T, Grossman LI (2012) Current relaxation of selection on the human genome: tolerance of deleterious mutations on olfactory receptors. Mol Phylogenet Evol. doi:10.1016/j.ympev.2012.07.032

    PubMed  Google Scholar 

  • Pitnick S, Jones KE, Wilkinson GS (2006) Mating system and brain size in bats. Proc Biol Sci 273(1587):719–724. doi:10.1098/rspb2005.3367

    Article  PubMed Central  PubMed  Google Scholar 

  • Ramensky V, Bork P, Sunyaev S (2002) Human non-synonymous SNPs: server and survey. Nucleic Acids Res 30(17):3894–3900

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sabeti PC, Varilly P, Fry B, Lohmueller J, Hostetter E, Cotsapas C, Xie X, Byrne EH, McCarroll SA, Gaudet R, Schaffner SF, Lander ES, Frazer KA, Ballinger DG, Cox DR, Hinds DA, Stuve LL, Gibbs RA, Belmont JW, Boudreau A, Hardenbol P, Leal SM, Pasternak S, Wheeler DA, Willis TD, Yu F, Yang H, Zeng C, Gao Y, Hu H, Hu W, Li C, Lin W, Liu S, Pan H, Tang X, Wang J, Wang W, Yu J, Zhang B, Zhang Q, Zhao H, Zhou J, Gabriel SB, Barry R, Blumenstiel B, Camargo A, Defelice M, Faggart M, Goyette M, Gupta S, Moore J, Nguyen H, Onofrio RC, Parkin M, Roy J, Stahl E, Winchester E, Ziaugra L, Altshuler D, Shen Y, Yao Z, Huang W, Chu X, He Y, Jin L, Liu Y, Sun W, Wang H, Wang Y, Xiong X, Xu L, Waye MM, Tsui SK, Xue H, Wong JT, Galver LM, Fan JB, Gunderson K, Murray SS, Oliphant AR, Chee MS, Montpetit A, Chagnon F, Ferretti V, Leboeuf M, Olivier JF, Phillips MS, Roumy S, Sallee C, Verner A, Hudson TJ, Kwok PY, Cai D, Koboldt DC, Miller RD, Pawlikowska L, Taillon-Miller P, Xiao M, Tsui LC, Mak W, Song YQ, Tam PK, Nakamura Y, Kawaguchi T, Kitamoto T, Morizono T, Nagashima A, Ohnishi Y, Sekine A, Tanaka T, Tsunoda T, Deloukas P, Bird CP, Delgado M, Dermitzakis ET, Gwilliam R, Hunt S, Morrison J, Powell D, Stranger BE, Whittaker P, Bentley DR, Daly MJ, de Bakker PI, Barrett J, Chretien YR, Maller J, McCarroll S, Patterson N, Pe’er I, Price A, Purcell S, Richter DJ, Sabeti P, Saxena R, Sham PC, Stein LD, Krishnan L, Smith AV, Tello-Ruiz MK, Thorisson GA, Chakravarti A, Chen PE, Cutler DJ, Kashuk CS, Lin S, Abecasis GR, Guan W, Li Y, Munro HM, Qin ZS, Thomas DJ, McVean G, Auton A, Bottolo L, Cardin N, Eyheramendy S, Freeman C, Marchini J, Myers S, Spencer C, Stephens M, Donnelly P, Cardon LR, Clarke G, Evans DM, Morris AP, Weir BS, Johnson TA, Mullikin JC, Sherry ST, Feolo M, Skol A, Zhang H, Matsuda I, Fukushima Y, Macer DR, Suda E, Rotimi CN, Adebamowo CA, Ajayi I, Aniagwu T, Marshall PA, Nkwodimmah C, Royal CD, Leppert MF, Dixon M, Peiffer A, Qiu R, Kent A, Kato K, Niikawa N, Adewole IF, Knoppers BM, Foster MW, Clayton EW, Watkin J, Muzny D, Nazareth L, Sodergren E, Weinstock GM, Yakub I, Birren BW, Wilson RK, Fulton LL, Rogers J, Burton J, Carter NP, Clee CM, Griffiths M, Jones MC, McLay K, Plumb RW, Ross MT, Sims SK, Willey DL, Chen Z, Han H, Kang L, Godbout M, Wallenburg JC, L’Archeveque P, Bellemare G, Saeki K, An D, Fu H, Li Q, Wang Z, Wang R, Holden AL, Brooks LD, McEwen JE, Guyer MS, Wang VO, Peterson JL, Shi M, Spiegel J, Sung LM, Zacharia LF, Collins FS, Kennedy K, Jamieson R, Stewart J (2007) Genome-wide detection and characterization of positive selection in human populations. Nature 449(7164):913–918. doi:10.1038/nature06250

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schillaci MA (2006) Sexual selection and the evolution of brain size in primates. PLoS One 1:e62. doi:10.1371/journal.pone.0000062

    Article  PubMed Central  PubMed  Google Scholar 

  • Simmons LW, Fitzpatrick JL (2012) Sperm wars and the evolution of male fertility. Reproduction 144(5):519–534. doi:10.1530/REP-12-0285

    Article  CAS  PubMed  Google Scholar 

  • Vicoso B, Charlesworth B (2006) Evolution on the X chromosome: unusual patterns and processes. Nat Rev Genet 7(8):645–653. doi:10.1038/nrg1914

    Article  CAS  PubMed  Google Scholar 

  • Vilella AJ, Severin J, Ureta-Vidal A, Heng L, Durbin R, Birney E (2009) EnsemblCompara Gene trees: complete, duplication-aware phylogenetic trees in vertebrates. Genome Res 19(2):327–335. doi:10.1101/gr.073585.107

    Article  CAS  PubMed  Google Scholar 

  • Voight BF (2008) Whamm…! Whole-Genome Homozygosity Analysis and Mapping Machina. http://coruscant.itmat.upenn.edu/whamm/index.html

  • Voight BF, Kudaravalli S, Wen X, Pritchard JK (2006) A map of recent positive selection in the human genome. PLoS Biol 4(3):e72. doi:10.1371/journal.pbio.0040072

    Article  PubMed Central  PubMed  Google Scholar 

  • Wildman DE, Uddin M, Liu G, Grossman LI, Goodman M (2003) Implications of natural selection in shaping 99.4 % nonsynonymous DNA identity between humans and chimpanzees: enlarging genus Homo. Proc Natl Acad Sci USA 100(12):7181–7188. doi:10.1073/pnas.12321721001232172100

    Article  CAS  PubMed  Google Scholar 

  • Wong GK, Yang Z, Passey DA, Kibukawa M, Paddock M, Liu CR, Bolund L, Yu J (2003) A population threshold for functional polymorphisms. Genome Res 13(8):1873–1879. doi:10.1101/gr.132430313/8/1873

    CAS  PubMed  Google Scholar 

  • Wyckoff GJ, Wang W, Wu CI (2000) Rapid evolution of male reproductive genes in the descent of man. Nature 403(6767):304–309. doi:10.1038/35002070

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Chen JY (2011) HOMER: a human organ-specific molecular electronic repository. BMC Bioinformatics 12(Suppl 10):S4. doi:10.1186/1471-2105-12-S10-S4

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Science Foundation (grants BCS-0550209 and BCS-0827546), the Region Aquitaine (projet MAGE), the Agence Nationale de la Recherche (ANR-12-PDOC-0037-01) and the Association contre les maladies mitochondriales.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence I. Grossman.

Additional information

Communicated by S. Hohmann.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 151 kb)

Supplementary material 2 (XLSX 47 kb)

Supplementary material 3 (XLSX 70 kb)

Supplementary material 4 (XLSX 68 kb)

Supplementary material 5 (XLSX 67 kb)

Supplementary material 6 (XLSX 8 kb)

Supplementary information.

Supplementary Table 1 Numbers of SNPs located on tissue specific genes according their prediction status based on dbSNP, POLYPHEN, and SIFT and according to their tissue specificity.

Supplementary Table 2 iHS p value estimated by Haplotter for testis-specific expressed genes presenting a deleterious or damaging SNP and reaching a maximal frequency of at least 15 %.

Supplementary Table 3 iHS values estimated by Whamm! for SNPs located on testis-specific expressed genes presenting a deleterious or damaging prediction and for each population where it reaches a frequency of at least 15 %.

Supplementary Table 4: F ST values estimated by SPSmart for SNPs located on testis-specific expressed genes presenting a deleterious or damaging prediction and reaching a maximal frequency of at least 15 %.

Supplementary Table 5 Numbers of genes presenting a predicted deleterious SNP and presenting paralogous genes in human genomes or orthologous genes in mouse and zebrafish genomes.

Supplementary Figure S1 Proportion of SNPs located on testis-specific genes compared to other SNPs according their effect prediction (dbSNP, SIFT, and POLYPHEN) and their frequency (rare <5 %, common ≥5 %).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pierron, D., Razafindrazaka, H., Rocher, C. et al. Human testis-specific genes are under relaxed negative selection. Mol Genet Genomics 289, 37–45 (2014). https://doi.org/10.1007/s00438-013-0787-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-013-0787-z

Keywords

Navigation