Molecular Genetics and Genomics

, Volume 288, Issue 12, pp 671–681 | Cite as

Validation of reference transcripts in strawberry (Fragaria spp.)

  • Maureen A. Clancy
  • Hernan G. Rosli
  • Srikar Chamala
  • W. Brad Barbazuk
  • P. Marcos Civello
  • Kevin M. FoltaEmail author
Original Paper


Contemporary methods to assay gene expression depend on a stable set of reference transcripts for accurate quantitation. A lack of well-tested reference genes slows progress in characterizing gene expression in high-value specialty crops. In this study, a set of strawberry (Fragaria spp.) constitutively expressed reference genes has been identified by merging digital gene expression data with expression profiling. Constitutive reference candidates were validated using quantitative PCR and hybridization. Several transcripts have been identified that show improved stability across tissues relative to traditional reference transcripts. Results are similar between commercial octoploid strawberry and the diploid model. Our findings also show that while some never-before-used references are appropriate for most applications, even the most stable reference transcripts require careful assessment across the diverse tissues and fruit developmental states before being adopted as controls.


Fragaria Gene expression Normalization Reference genes Strawberry 


  1. Abràmoff MD, Magalhães PJ, Ram SJ (2004) Image processing with ImageJ. Biophotonics Int 11:36–42Google Scholar
  2. Aharoni A, O’Connell AP (2002) Gene expression analysis of strawberry achene and receptacle maturation using DNA microarrays. J Exp Bot 53:2073–2087PubMedCrossRefGoogle Scholar
  3. Andersen CL, Jensen JL, Ørntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64:5245–5250PubMedCrossRefGoogle Scholar
  4. Bombarely A, Merchante C, Csukasi F, Cruz-Rus E, Caballero JL, Medina-Escobar N, Blanco-Portales R, Botella MA, Muñoz-Blanco J, Sánchez-Sevilla JF et al (2010) Generation and analysis of ESTs from strawberry (Fragaria xananassa) fruits and evaluation of their utility in genetic and molecular studies. BMC Genomics 11:503PubMedCrossRefGoogle Scholar
  5. Brunner AM, Yakovlev IA, Strauss SH (2004) Validating internal controls for quantitative plant gene expression studies. BMC Plant Biol 4:14PubMedCrossRefGoogle Scholar
  6. Chang S, Puryear J, Cairney J (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Report 11:113–116CrossRefGoogle Scholar
  7. Church GM, Gilbert W (1984) Genomic sequencing. Proc Natl Acad Sci 81:1991–1995PubMedCrossRefGoogle Scholar
  8. Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible WR (2005) Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol 139:5–17PubMedCrossRefGoogle Scholar
  9. Dubois A, Remay A, Raymond O, Balzergue S, Chauvet A, Maene M, Pécrix Y, Yang S-H, Jeauffre J, Thouroude T et al (2011) Genomic approach to study floral development genes in Rosa sp. PLoS ONE 6:e28455PubMedCrossRefGoogle Scholar
  10. Folta KM, Clancy MA, Chamala S, Barbazuk WB, Dhingra A, Brunings A, Gomide L, Kulathinal RJ, Peres N, Davis TM (2010) A transcript accounting from diverse tissues of a cultivated strawberry (Fragaria × ananassa). Plant Genome 3:99–105CrossRefGoogle Scholar
  11. Haymes KM, Davis TM (1998) Agrobacterium mediated transformation of ‘Alpine’ Fragaria vesca, and transmission of transgenes to R1 progeny. Plant Cell Rep 17:279–283CrossRefGoogle Scholar
  12. Hellemans J, Mortier G, De Paepe A, Speleman F, Vandesompele J (2007) qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol 8:R19PubMedCrossRefGoogle Scholar
  13. Jain M, Nijhawan A, Tyagi AK, Khurana JP (2006) Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochem Biophys Res Commun 345:646–651PubMedCrossRefGoogle Scholar
  14. Klie M, Debener T (2011) Identification of superior reference genes for data normalisation of expression studies via quantitative PCR in hybrid roses (Rosa hybrida). BMC Res Notes 4:518PubMedCrossRefGoogle Scholar
  15. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2ΔΔCT Method. Methods 25:402–408PubMedCrossRefGoogle Scholar
  16. Mafra V, Kubo KS, Alves-Ferreira M, Ribeiro-Alves M, Stuart RM, Boava LP, Rodrigues CM, Machado MA (2012) Reference genes for accurate transcript normalization in citrus genotypes under different experimental conditions. PLoS ONE 7:e31263PubMedCrossRefGoogle Scholar
  17. Meng Y, Li N, Tian J, Gao J, Zhang C (2013) Identification and validation of reference genes for gene expression studies in postharvest rose flower (Rosa hybrida). Sci Hortic 158:16–21CrossRefGoogle Scholar
  18. Nicot N, Hausman J-F, Hoffmann L, Evers D (2005) Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. J Exp Bot 56:2907–2914PubMedCrossRefGoogle Scholar
  19. Oosumi T, Gruszewski HA, Blischak LA, Baxter AJ, Wadl PA, Shuman JL, Veilleux RE, Shulaev V (2006) High-efficiency transformation of the diploid strawberry (Fragaria vesca) for functional genomics. Planta 223:1219–1230PubMedCrossRefGoogle Scholar
  20. Pérez R, Tupac-Yupanqui I, Dunner S (2008) Evaluation of suitable reference genes for gene expression studies in bovine muscular tissue. BMC Mol Biol 9:79PubMedCrossRefGoogle Scholar
  21. Ramakers C, Ruijter JM, Deprez RHL, Moorman AFM (2003) Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett 339:62–66PubMedCrossRefGoogle Scholar
  22. Rasband WS (1997) ImageJ. US National Institutes of Health, BethesdaGoogle Scholar
  23. Rocha-Martins M, Njaine B, Silveira MS (2012) Avoiding Pitfalls of Internal Controls: validation of reference genes for analysis by qRT-PCR and western blot throughout rat retinal development. PLoS ONE 7:e43028PubMedCrossRefGoogle Scholar
  24. Sambrook J, Russell DW (2001). Molecular cloning: a laboratory manual: CSHL pressGoogle Scholar
  25. Schaffer RJ, Friel EN, Souleyre EJF, Bolitho K, Thodey K, Ledger S, Bowen JH, Ma J-H, Nain B, Cohen D et al (2007) A genomics approach reveals that aroma production in apple is controlled by ethylene predominantly at the final step in each biosynthetic pathway. Plant Physiol 144:1899–1912PubMedCrossRefGoogle Scholar
  26. Shulaev V, Sargent DJ, Crowhurst RN, Mockler TC, Folkerts O, Delcher AL, Jaiswal P, Mockaitis K, Liston A, Mane SP et al (2011) The genome of woodland strawberry (Fragaria vesca). Nat Genet 43:109–116PubMedCrossRefGoogle Scholar
  27. Steinau M, Rajeevan MS, Unger ER (2006) DNA and RNA references for qRT-PCR assays in exfoliated cervical cells. J Mol Diagn 8:113–118PubMedCrossRefGoogle Scholar
  28. Tong ZG, Gao ZH, Wang F, Zhou J, Zhang Z (2009) Selection of reliable reference genes for gene expression studies in peach using real-time PCR. BMC Mol Biol 10:13CrossRefGoogle Scholar
  29. Udvardi MK, Czechowski T, Scheible W-R (2008) Eleven golden rules of quantitative RT-PCR. The Plant Cell Online 20:1736–1737CrossRefGoogle Scholar
  30. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome biology 3:research0034PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Maureen A. Clancy
    • 1
  • Hernan G. Rosli
    • 2
  • Srikar Chamala
    • 3
  • W. Brad Barbazuk
    • 3
    • 4
  • P. Marcos Civello
    • 5
    • 6
  • Kevin M. Folta
    • 1
    • 4
    Email author
  1. 1.Horticultural Sciences DepartmentUniversity of FloridaGainesvilleUSA
  2. 2.Instituto de Investigaciones Biotecnológicas, Instituto Tecnológico de Chascomús (IIB-INTECH), UNSAM-CONICET, Camino Circunvalación Laguna Km 8.2 (B7130IWA)ChascomúsArgentina
  3. 3.Department of Biology, Genetics InstituteUniversity of FloridaGainesvilleUSA
  4. 4.Graduate Program in Plant Cellular and Molecular BiologyUniversity of FloridaGainesvilleUSA
  5. 5.Facultad de Ciencias ExactasUniversidad Nacional de La Plata (UNLP)La PlataArgentina
  6. 6.INFIVE (CONICET-UNLP), Instituto de Fisiología VegetalLa PlataArgentina

Personalised recommendations