Skip to main content

Advertisement

Log in

Residual recombination in Neurospora crassa spo11 deletion homozygotes occurs during meiosis

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Spo11 is considered responsible for initiation of meiotic recombination in higher organisms, but previous analysis using spo11 RIP mutants suggests that the his-3 region of Neurospora crassa experiences spo11-independent recombination. However, despite possessing several stop codons, it is conceivable that the mutants are not completely null. Also, since lack of spo11 interferes with chromosomal pairing and proper segregation at Meiosis I, spores can be partially diploid for a period after meiosis. Thus, it is possible that the recombination observed could be an abnormal event, occurring during the period of aneuploidy rather than during meiosis. To test the former hypothesis, we generated spo11 deletion homozygotes. Using crosses heteroallelic for his-3 mutations, we showed that His+ progeny are generated in spo11 deletion homozygotes at a frequency at least as high as in wild type and, as in the spo11 RIP mutants, local crossing over is not reduced. To test the latter hypothesis, we utilised mutations in either end of a histone H1-GFP fusion gene, inserted between the recombination hotspot cog and his-3, in which GFP+ spores arise as a result of recombination in a cross between the two GFP alleles. In a control cross homozygous for spo11 +, the frequency at which GFP+ spores arise is comparable to the frequency of His+ spores and glowing nuclei first appear during prophase, prior to metaphase I, as expected for a product of meiotic recombination. Similarly in spo11 deletion homozygotes, GFP+ spores arise at high frequency and glowing nuclei are first seen before metaphase, indicating that allelic recombination occurs during meiosis in the absence of spo11. We have therefore shown that spo11 is not essential for either his-3 allelic recombination or crossing over in the vicinity of his-3, and that spo11-independent allelic recombination is meiotic, indicating that there is a spo11-independent mechanism for initiation of recombination in Neurospora.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Angel T, Austin B, Catcheside DG (1970) Regulation of recombination at the his-3 locus in Neurospora crassa. Aust J Biol Sci 23:1229–1240

    PubMed  CAS  Google Scholar 

  • Bergerat A, de Massy B, Gadelle D, Varoutas PC, Nicolas A, Forterre P (1997) An atypical topoisomerase II from archaea with implications for meiotic recombination. Nature 386:414–417

    Article  PubMed  CAS  Google Scholar 

  • Bowring FJ, Catcheside DEA (1991) The initiation site for recombination cog is at the 3′ end of the Neurospora crassa his-3 gene. Mol Gen Genet 229:273–277

    Article  PubMed  CAS  Google Scholar 

  • Bowring FJ, Catcheside DEA (1996) Gene conversion alone accounts for more than 90% of recombination events at the am locus of Neurospora crassa. Genetics 143:129–136

    PubMed  CAS  Google Scholar 

  • Bowring FJ, Yeadon PJ, Stainer RG, Catcheside DEA (2006) Chromosome pairing and meiotic recombination in Neurospora crassa spo11 mutants. Curr Genet 50:115–123

    Article  PubMed  CAS  Google Scholar 

  • Bowring FJ, Yeadon PJ, Catcheside DEA (2012) Use of fluorescent protein to analyse recombination at three loci in Neurospora crassa. Fung Genet Biol 49:619–625

    Article  CAS  Google Scholar 

  • Carpenter ATC (1975) Electron microscopy of meiosis in Drosophila melanogaster females: II: The recombination nodule a recombination-associated structure at pachytene? Proc Nat Acad Sci USA 72:3186–3189

    Article  PubMed  CAS  Google Scholar 

  • Case ME, Giles NH (1958) Recombination mechanisms at the pan-2 locus in Neurospora crassa. Cold Spring Harbour Symp Quant Biol 23:119–135

    Article  CAS  Google Scholar 

  • Catcheside DG (1975) Occurrence in wild strains of Neurospora crassa of genes controlling genetic recombination. Aust J Biol Sci 28:213–225

    PubMed  CAS  Google Scholar 

  • Catcheside DEA (1986) A restriction and modification model for the initiation and control of recombination in Neurospora. Genet Res Camb 47:157–165

    Article  CAS  Google Scholar 

  • Catcheside DG, Corcoran D (1973) Control of non-allelic recombination in Neurospora crassa. Aust J Biol Sci 26:1337–1353

    PubMed  CAS  Google Scholar 

  • Catlett NL, Lee B, Yoder OC, Turgeon BG (2003) Split marker recombination for efficient targeted deletion of fungal genes. Fung Genet Newsl 50:9–11

    Google Scholar 

  • Celerin M, Merino ST, Stone JE, Menzie AM, Zolan ME (2000) Multiple roles of spo11 in meiotic chromosome behavior. Embo J 19:2739–2750

    Article  PubMed  CAS  Google Scholar 

  • Colot HV, Park G, Turner GE, Ringelberg C, Crew CM, Litvinkova L, Weiss RL, Borkovich KA, Dunlap JC (2006) A high-throughput gene knockout procedure for neurospora reveals functions for multiple transcription factors. Proc Natl Acad Sci USA 103:10352–10357

    Article  PubMed  CAS  Google Scholar 

  • Davis L, Smith GR (2003) Non-random homolog segregation at meiosis I in Schizosaccharomyces pombe mutants lacking recombination. Genetics 163:857–874

    PubMed  CAS  Google Scholar 

  • Dernburg AF, McDonald K, Moulder G, Barstead R, Dresser M, Villeneuve AM (1998) Meiotic recombination in C. elegans initiates by a conserved mechanism and is indispensible for homologous chromosome synapsis. Cell 94:387–398

    Article  PubMed  CAS  Google Scholar 

  • Diaz RL, Alcid AD, Berger JM, Keeney S (2002) Identification of residues in yeast spo11p critical for meiotic DNA double-strand break formation. Mol Cell Biol 22:1106–1115

    Article  PubMed  CAS  Google Scholar 

  • Ebbole D, Sachs M (1990) A rapid and simple method for isolation of Neurospora crassa homokaryons using microconidia. Fungal Genet Newsl 37:17–18

    Google Scholar 

  • Farah JA, Cromie G, Davis L, Steiner WW, Smith GR (2005) Activation of an alternative, Rec12 (spo11)-independent pathway of fission yeast meiotic recombination in the absence of a DNA flap endonuclease. Genetics 171:1499–1511

    Article  PubMed  CAS  Google Scholar 

  • Grelon M, Vezon D, Gendrot G, Pelletier G (2001) At spo11-1 is necessary for efficient meiotic recombination in plants. Embo J 20:589–600

    Article  PubMed  CAS  Google Scholar 

  • Hartung F, Puchta H (2000) Molecular characterisation of two paralogous spo11 homologues in Arabidopsis thaliana. Nucleic Acids Res 28:1548–1554

    Article  PubMed  CAS  Google Scholar 

  • Hartung F, Puchta H (2001) Molecular characterization of homologues of both subunits A (spo11) and B of the archaebacterial topoisomerase six in plants. Gene 271:81–86

    Article  PubMed  CAS  Google Scholar 

  • Henderson SA (1970) The time and place of meiotic crossing-over. Ann Rev Genet 4:295–324

    Article  PubMed  CAS  Google Scholar 

  • Hunter N (2007) Meiotic recombination. In: Aguilera A, Rothstein R (eds) Molecular genetics of recombination. Springer-Verlag, Berlin, pp 381–442

    Chapter  Google Scholar 

  • Jain M, Tyagi AK, Khurana JP (2006) Overexpression of putative topoisomerase six genes from rice confers stress tolerance in transgenic Arabidopsis plants. FEBS J 273:5245–5260

    Article  PubMed  CAS  Google Scholar 

  • Keeney S, Neale MJ (2006) Initiation of meiotic recombination by formation of DNA double-strand breaks: mechanism and regulation. Biochem Soc Trans 34:523–525

    Article  PubMed  CAS  Google Scholar 

  • Keeney S, Giroux CN, Kleckner N (1997) Meiosis-specific double-strand breaks are catalysed by spo11, a member of a widely conserved protein family. Cell 88:375–384

    Article  PubMed  CAS  Google Scholar 

  • Klapholz S, Waddel CS, Esposito RE (1985) The role of the spo11 gene in meiotic recombination in yeast. Genetics 110:187–216

    PubMed  CAS  Google Scholar 

  • Kuwayama H, Obawa S, Morio T, Katoh M, Urushihara H, Tanaka Y (2002) PCR-mediated generation of a gene disruption construct without the use of DNA ligase and plasmid vectors. Nucleic Acids Res 30:e2–e5

    Article  PubMed  Google Scholar 

  • Lichten M (2001) Meiotic recombination: breaking the genome to save it. Curr Biol 7:R253–R256

    Article  Google Scholar 

  • Mallela S, Latypov V, Kohli J (2011) Rec10- and Rec12-independent recombination in meiosis of Schizosaccharomyces pombe. Yeast 28(405–421):15

    Google Scholar 

  • McKim KS, Hayashi-Hagihara A (1998) mei-W68 in Drosophila melanogaster encodes a spo11 homolog: evidence that the mechanism for initiating meiotic recombination is conserved. Genes Dev 12:2932–2942

    Article  PubMed  CAS  Google Scholar 

  • Mitchell MB (1955) Aberrant recombination of pyridoxine mutants of Neurospora. Proc Natl Acad Sci USA 41:215–220

    Article  PubMed  CAS  Google Scholar 

  • Muller HJ (1916) The mechanism of crossing over. Am Nat 50:284–305

    Article  Google Scholar 

  • Murray NE (1960) Complementation and recombination between methionone-2 alleles in Neurospora crassa. Heredity 15:207–217

    Article  Google Scholar 

  • Orbach MJ (1994) A cosmid with a HygR marker for fungal library construction and screening. Gene 150(159):162

    Google Scholar 

  • Selker EU (1990) Premeiotic instability of repeated sequences in Neurospora crassa. Ann Rev Genet 24:579–613

    Article  PubMed  CAS  Google Scholar 

  • Shiu PK, Raju NB, Zickler D, Metzenberg RL (2001) Meiotic silencing by unpaired DNA. Cell 107:905–916

    Article  PubMed  CAS  Google Scholar 

  • Stadler DR (1959) The relationship of gene conversion to crossing over in Neurospora. Proc Natl Acad Sci USA 45:1625–1629

    Article  PubMed  CAS  Google Scholar 

  • Stadler DR, Towe AM (1963) Recombination of allelic cysteine mutants in Neurospora. Genetics 48:1323–1344

    PubMed  CAS  Google Scholar 

  • Storlazzi A, Xu L, Cao L, Kleckner N (1995) Crossover and noncrossover recombination during meiosis: timing and pathway relationships. Proc Natl Acad Sci USA 92:8512–8516

    Article  PubMed  CAS  Google Scholar 

  • Storlazzi A, Tessé S, Gargano S, James F, Kleckner N, Zickler D (2003) Meiotic double-strand breaks at the interface of chromosome movement, chromosome remodelling, and reductional division. Genes Dev 17:2675–2687

    Article  PubMed  CAS  Google Scholar 

  • Suyama J, Munkres KD, Woodward VW (1959) Genetic analysis of the pyr-3 locus of Neurospora crassa: the bearing of recombination and gene conversion upon intra-allelic linearity. Genetica 30:293–311

    Article  PubMed  CAS  Google Scholar 

  • Yeadon PJ, Catcheside DEA (1995) The chromosomal region which includes the recombinator cog in Neurospora crassa is highly polymorphic. Curr Genet 28:155–163

    Article  PubMed  CAS  Google Scholar 

  • Yeadon PJ, Rasmussen JP, Catcheside DEA (2001) Recombination events in Neurospora crassa may cross a translocation breakpoint by a template-switching mechanism. Genetics 159:571–579

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the National Institutes of Health, who provided the funding (R01 GM088338-01A1) that made this work possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. J. Yeadon.

Additional information

Communicated by A. Aguilera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bowring, F.J., Yeadon, P.J. & Catcheside, D.E.A. Residual recombination in Neurospora crassa spo11 deletion homozygotes occurs during meiosis. Mol Genet Genomics 288, 437–444 (2013). https://doi.org/10.1007/s00438-013-0761-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-013-0761-9

Keywords

Navigation