Digital gene expression analysis of early root infection resistance to Sporisorium reilianum f. sp. zeae in maize

An Erratum to this article was published on 31 January 2013

Abstract

The maize smut fungus, Sporisorium reilianum f. sp. zeae, which is an important biotrophic pathogen responsible for extensive crop losses, can infect maize by invading the root during the early seedling stage. In order to investigate disease-resistance mechanisms at this early seedling stage, digital gene expression analysis, which applies a dual-enzyme approach, was used to identify the transcriptional changes in the roots of Huangzao4 (susceptible) and Mo17 (resistant) after root inoculation with S. reilianum. During the infection in the roots, the expression pattern of pathogenesis-related genes in Huangzao4 and Mo17 were significantly differentially regulated at different infection stages. The glutathione S-transferase enzyme activity and reactive oxygen species levels also showed changes before and after inoculation. The total lignin contents and the pattern of lignin depositions in the roots differed during root colonization of Huangzao4 and Mo17. These results suggest that the interplay between S. reilianum and maize during the early infection stage involves many important transcriptional and physiological changes, which offer several novel insights to understanding the mechanisms of resistance to the infection of biotrophic fungal pathogens.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Ali A, Baggett J (1990) Inheritance of resistance to head smut disease in corn. J Am Soc Hortic Sci 115:668–672

    Google Scholar 

  2. Anders S (2010) Analysing RNA-Seq data with the “DESeq” package. Mol Biol 1–17

  3. Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol, doi:10.1186/gb-2010-11-10-r106

  4. Anterola AM, Lewis NG (2002) Trends in lignin modification: a comprehensive analysis of the effects of genetic manipulations/mutations on lignification and vascular integrity. Phytochemistry 61:221–294

    PubMed  Article  CAS  Google Scholar 

  5. Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    PubMed  Article  CAS  Google Scholar 

  6. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H et al (2000) Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat Genet 25:25–29

    PubMed  Article  CAS  Google Scholar 

  7. Audic S, Claverie JM (1997) The significance of digital gene expression profiles. Genome Res 7:986

    PubMed  CAS  Google Scholar 

  8. Bai JK, Song ZH, Chen J, Liang JY, Liu WC, Luo GZ, Zhao TC, Zhou YL (1994) A review of the pathogenic variation of corn diseases and breeding of resistant cultivars. Maize Sci 2(1):67–72

    Google Scholar 

  9. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Statist Soc Ser B 57:289–300

    Google Scholar 

  10. Blencowe BJ, Ahmad S, Lee LJ (2009) Current-generation high-throughput sequencing: deepening insights into mammalian transcriptomes. Gene Dev 23:1379

    PubMed  Article  CAS  Google Scholar 

  11. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    PubMed  Article  CAS  Google Scholar 

  12. De Pinto MC, Paradiso A, Leonetti P, De Gara L (2006) Hydrogen peroxide, nitric oxide and cytosolic ascorbate peroxidase at the crossroad between defence and cell death. Plant J 48:784–795

    PubMed  Article  Google Scholar 

  13. Dixon DP, Lapthorn A, Edwards R (2002) Plant glutathione transferases. Genome Biol 3(3): reviews 3004.1–3004.10

  14. Eveland AL, Satoh-Nagasawa N, Goldshmidt A, Meyer S, Beatty M, Sakai H, Ware D, Jackson D (2010) Digital gene expression signatures for maize development. Plant Physiol 154:1024–1039

    PubMed  Article  CAS  Google Scholar 

  15. Everton B, Imad Z, Yongsheng C, Jeppe A, Gerhard W, Milena O, Birte D, Uschi F, Yves B, Thomas L (2010) Polymorphisms in O-methyltransferase genes are associated with stover cell wall digestibility in European maize (Zea mays L.). BMC Plant Biol 10:27

    Article  Google Scholar 

  16. Frederiksen R (1977) Head smuts of corn and sorghum. In: Loden HD, Wilkinson D (eds) Proceedings of the 32nd annual corn sorghum conference. American seed association, Washington, pp 89–104

  17. Hammerschmidt R, Lamport DTA, Muldoon EP (1984) Cell wall hydroxyproline enhancement and lignin deposition as an early event in the resistance of cucumber to Cladosporium cucumerinum. Physiol Plant Pathol 24:43–47

    Article  CAS  Google Scholar 

  18. Hammond-Kosack KE, Jones JDG (1996) Resistance gene-dependant plant defense responses. Plant Cell 8:1773–1791

    PubMed  CAS  Google Scholar 

  19. He ZD, Chen J, Gao ZG, Zhuang JH (2005) Progress on studies of head smut physiological differential in maize. J Maize Sci 13(4):117–120

    Google Scholar 

  20. Hejgaard J, Jacobsen S, Svendsen IB (1991) Two antifungal thaumatin-like proteins from barley grain. FEBS Lett 291(1):127–131

    PubMed  Article  CAS  Google Scholar 

  21. Houterman PM, Cornelissen BJC, Rep M (2008) Suppression of plant resistance gene-based immunity by a fungal effector. PLoS Pathog 4:e1000061. doi:10.1371/journal.ppat.1000061

    PubMed  Article  Google Scholar 

  22. Jabs T, Dietrich RA, Dangl JL (1996) Initiation of runaway cell death in an Arabidopsis mutant by extracellular superoxide. Science 273(5283):1853–1856

    PubMed  Article  CAS  Google Scholar 

  23. Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329

    PubMed  Article  CAS  Google Scholar 

  24. Kämper J, Kahmann R, Bölker M, Ma LJ, Brefort T, Saville BJ et al (2006) Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis. Nature 444:97–101

    PubMed  Article  Google Scholar 

  25. Kang SL, Li XH, Qiao XJ, Zhang GB, Ma YH, Han FC, Chen BZ (1994) Study on the biological characteristics of teliospores of Sphacelotheca reiliana (I). J HB Agric Univ 17(3):78–84

    CAS  Google Scholar 

  26. Kirk TK, Obst JR (1988) Lignin determination. Method Enzymol 161:87–101

    Article  CAS  Google Scholar 

  27. Kitajima S, Sato F (1999) Plant pathogenesis-related proteins: molecular mechanisms of gene expression and protein function. J Biochem 125(1):1–8

    PubMed  Article  CAS  Google Scholar 

  28. Li XH, Kang SL, Li JY, Zhang GB, Ma YH, Han FC, Chen BZ (1995) Study on the biological characteristics of teliospores of Sphacelotheca reiliana (II). J HB Agric Univ 18(1):57–61

    CAS  Google Scholar 

  29. Maere S, Heymans K, Kuiper M (2005) BiNGO: a cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics 21:3448

    PubMed  Article  CAS  Google Scholar 

  30. Marrs KA (1996) The functions and regulation of glutathione S-transferases in plants. Annu Rev Plant Physiol Plant Mol Biol 47:127–158

    PubMed  Article  CAS  Google Scholar 

  31. Martinez C, Roux C, Dargent R (1999) Biotrophic development of Sporisorium reilianum f. sp. zeae in vegetative shoot apex of maize. Phytopahtol 89:247–253

    Article  CAS  Google Scholar 

  32. Martinez C, Jauneau A, Roux C, Savy C, Dargent R (2000) Early infection of maize roots by Sporisorium reilianum f. sp. zeae. Protoplasma 213:83–92

    Article  Google Scholar 

  33. Martinez C, Roux C, Jauneau A, Dargent R (2002) The biological cycle of Sporisorium reilianum f.sp. zeae: an overview using microscopy. Mycologia 94:505–514

    PubMed  Article  Google Scholar 

  34. Matyac CA, Kommedahl T (1985) Factors affecting the development of head smut caused by Sphacelotheca reiliana on corn. Phytopahtol 75:577–581

    Article  Google Scholar 

  35. Mendgen K, Hahn M (2002) Plant infection and the establishment of fungal biotrophy. Trends Plant Sci 7:352–356

    PubMed  Article  CAS  Google Scholar 

  36. Mendgen K, Hahn M, Deising H (1996) Morphogenesis and mechanisms of penetration by plant pathogenic fungi. Ann Rev Phytopathol 34:367–386

    Article  CAS  Google Scholar 

  37. Ni S, Xiao YN, Wang FG, Zhao JR, Zhang SP, Zheng YL (2006) The research of Sporisorium reiliana’s infection efficiency and spreading in maize based on PCR assays. Sci Agric Sinica 39(9):1804–1809

    Google Scholar 

  38. Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    PubMed  Article  CAS  Google Scholar 

  39. Osorio JA, Frederiksen RA (1998) Development of an infection assay for Sporisorium reilianum, the head smut pathogen on sorghum. Plant Dis 82:1232–1236

    Article  Google Scholar 

  40. Passardi F, Penel C, Dunand C (2004) Performing the paradoxical: how plant peroxidases modify the cell wall. Trends Plant Sci 9(11):534–540

    PubMed  Article  CAS  Google Scholar 

  41. Pomar F, Novo M, Bernal MA, Merino F, Barcelo AR (2004) Changes in stem lignins (monomer composition and crosslinking) and peroxidase are related with the maintenance of leaf photosynthetic integrity during Verticillium wilt in Capsicum annuum. New Phytol 163:111–123

    Article  CAS  Google Scholar 

  42. Ramonell K, Berrocal-Lobo M, Koh S, Wan J, Edwards H, Stacey G, Somerville S (2005) Loss-of-function mutations in chitin responsive genes show increased susceptibility to the powdery mildew pathogen Erysiphe cichoracearum. Plant Physiol 138:1027

    PubMed  Article  CAS  Google Scholar 

  43. Rastogi S, Dwivedi UN (2008) Manipulation of lignin in plants with special reference to O-methyltransferase. Plant Sci 174:264–277

    Article  CAS  Google Scholar 

  44. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1):139–140

    PubMed  Article  CAS  Google Scholar 

  45. Rosebrock TR, Zeng L, Brady JJ, Abramovitch RB, Xiao F, Martin GB (2007) A bacterial E3 ubiquitin ligase targets a host protein kinase to disrupt plant immunity. Nature 448:370–374

    PubMed  Article  CAS  Google Scholar 

  46. Ruiz-Herrera J, Martínez-Espinoza AD (2010) The fungus Ustilago maydis, from the aztec cuisine to the research laboratory. Int Microbiol 1:149–158

    Google Scholar 

  47. Saghai-Maroof M, Soliman K, Jorgensen RA, Allard RW (1984) Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA 81(24):8014–8018

    PubMed  Article  CAS  Google Scholar 

  48. Schirawski J, Heinze B, Wagenknecht M, Kahmann R (2005) Mating type loci of Sporisorium reilianum: novel pattern with three a and multiple b specificities. Eukaryot Cell 4:1317–1327

    PubMed  Article  CAS  Google Scholar 

  49. Schraudner M, Moeder W, Wiese C, Camp WV, Inzé D, Langebartels C, Sandermann H Jr (1998) Ozone-induced oxidative burst in the ozone biomonitor plant, tobacco Bel W3. Plant J 16(2):235–245

    PubMed  Article  CAS  Google Scholar 

  50. Selitrennikoff CP (2001) Antifungal proteins. Appl Environ Microbiol 67(7):2883–2894

    PubMed  Article  CAS  Google Scholar 

  51. Sels J, Mathys J, De Coninck BM, Cammue BP, De Bolle MF (2008) Plant pathogenesis-related (PR) proteins: a focus on PR peptides. Plant Physiol Biochem 46(11):941–950

    PubMed  Article  CAS  Google Scholar 

  52. Shendure J, Ji H (2008) Next-generation DNA sequencing. Nat Biotechnol 26:1135–1145

    PubMed  Article  CAS  Google Scholar 

  53. Simon SA, Zhai J, Nandety RS, McCormick KP, Zeng J, Mejia D, Meyers BC (2009) Short-read sequencing technologies for transcriptional analyses. Ann Rev Plant Bio 60:305–333

    Article  CAS  Google Scholar 

  54. Stahl EA, Bishop JG (2000) Plant-pathogen arms races at the molecular level. Current Opin Plant Biol 3:299–304

    Article  CAS  Google Scholar 

  55. ‘t Hoen PA, Ariyurek Y, Thygesen HH, Vreugdenhil E, Vossen RH, de Menezes RX, Boer JM, Van Ommen GJ, den Dunnen JT (2008) Deep sequencing-based expression analysis shows major advances in robustness, resolution and inter-lab portability over five microarray platforms. Nucleic Acids Res 36:e141

  56. Tanabe S, Nishizawa Y, Minami E (2009) Effects of catalase on the accumulation of H2O2 in rice cells inoculated with rice blast fungus, Magnaporthe oryzae. Physiol Plant 137(2):148–154

    PubMed  Article  CAS  Google Scholar 

  57. Tatebe K, Zeytun A, Ribeiro RM, Hoffmann R, Harrod KS, Forst CV (2010) Response network analysis of differential gene expression in human epithelial lung cells during avian influenza infections. BMC Bioinformatics 11(1):170

    PubMed  Article  Google Scholar 

  58. Torres MA, Jones JD, Dangl JL (2006) Reactive oxygen species signaling in response to pathogens. Plant Physiol 141(2):373–378

    PubMed  Article  CAS  Google Scholar 

  59. Tronchet M, Balagué C, Kroj T, Jouanin L, Roby D (2010) Cinnamyl alcohol dehydrogenases-c and d key enzymes in lignin biosynthesis, play an essential role in disease resistance in Arabidopsis. Mol Plant Pathol 11(1):83–92

    PubMed  Article  CAS  Google Scholar 

  60. van Kan JAL (2006) Licensed to kill: the lifestyle of a necrotrophic plant pathogen. Trends Plant Sci 11:247–253

    PubMed  Article  Google Scholar 

  61. Van Loon LC, Van Strien EA (1999) The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiol Mol Plant Pathol 55:85–97

    Article  Google Scholar 

  62. Wang ZH, Jiang YX, Wang LF, Jin Y, Li XH, Shi HL (2002) Research advance on head smut disease in maize. J Maize Sci 10(4):61–64

    Google Scholar 

  63. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10(1):57–63

    PubMed  Article  CAS  Google Scholar 

  64. Xu ML, Melchinger A, Lübberstedt T (1999) Species-specific detection of the maize pathogens Sporisorium reiliana and Ustilago maydis by dot blot hybridization and PCR-based assays. Plant Dis 83:390–395

    Article  CAS  Google Scholar 

  65. Yao JQ, Yu F (2011) DEB: a web interface for RNA-seq digital gene expression analysis. Bioinformation 7(1):44–45

    PubMed  Article  Google Scholar 

  66. Zhang WZ, Song DZ, Zhao JF, Zhang WY, Li HS, Liu JX, Yang GY (2002) Study on genetics features of maize head smut-resistance. J Maize Sci 10(4):67–69

    Google Scholar 

  67. Zhang LF, Chia JM, Kumari S, Stein JC, Liu Z, Narechania A, Maher CA, Guill K, McMullen MD, Ware D (2009) A genome-wide characterization of microRNA genes in maize. PLoS Genet 5:e1000716. doi:10.1371/journal.pgen.1000716

    PubMed  Article  Google Scholar 

  68. Zipfel C (2009) Early molecular events in PAMP-triggered immunity. Current Opin Plant Biol 12:414–420

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully thank Andrea L. Eveland, Lifang Zhang and Doreen Ware (Cold spring harbor laboratories in Cold Spring Harbor, NY) for their big help in the data analysis of DEG library and corresponding suggestive opinions in writing this paper. This work was supported by Beijing Agricultural Innovative Platform-Beijing Natural Science Fund Program (#D08070500690802) and the 111 Project (B07041).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yonglian Zheng.

Additional information

Communicated by S. Hohmann.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 703 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhang, S., Xiao, Y., Zhao, J. et al. Digital gene expression analysis of early root infection resistance to Sporisorium reilianum f. sp. zeae in maize. Mol Genet Genomics 288, 21–37 (2013). https://doi.org/10.1007/s00438-012-0727-3

Download citation

Keywords

  • Digital gene expression (DGE)
  • Host response
  • Head smut
  • Zea mays