Skip to main content

Advertisement

Log in

DDM1 (Decrease in DNA Methylation) genes in rice (Oryza sativa)

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Regulation of cytosine methylation in the plant genome is of pivotal in determining the epigenetic states of chromosome regions. Relative tolerance of plant to deficiency in cytosine methylation provides unparalleled opportunities to study the mechanism for regulation of cytosine methylation. The Decrease in DNA Methylation 1 (DDM1) of Arabidopsis thaliana is one of the best characterized plant epigenetic regulators that are necessary for maintenance of cytosine methylation in genomic DNA. Although cytosine methylation could affect various aspects of plant growth and development including those related to agricultural importance, orthologs of DDM1 in plants other than Arabidopsis has not been studied in detail. In this study, we identified two rice genes with similarity to Arabidopsis DDM1 and designated them OsDDM1a and OsDDM1b. Both of the rice DDM1 homologs are transcribed during development and their amino acid sequences are 93 % identical to each other. Transgenic rice lines expressing the OsDDM1a cDNA in the antisense orientation exhibited genomic DNA hypomethylation. In those lines, repeated sequences were more severely affected than a single copy sequence as is the case in Arabidopsis ddm1 mutants. Transcripts derived from endogenous transposon-related loci were up-regulated in the antisense OsDDM1 lines, opening a possibility to identify and utilize potentially active transposons for rice functional genomics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Brzeski J, Jerzmanowski A (2003) Deficient in DNA Methylation 1 (DDM1) defines a novel family of chromatin-remodeling factors. J Biol Chem 278:823–828

    Article  PubMed  CAS  Google Scholar 

  • Cheng Z, Dong F, Langdon T, Ouyang S, Buell CR, Gu M, Blattner FR, Jiang J (2002) Functional rice centromeres are marked by a satellite repeat and a centromere-specific retrotransposon. Plant Cell 14:1691–1704

    Article  PubMed  CAS  Google Scholar 

  • Church GM, Gilbert W (1984) Genomic sequencing. Proc Natl Acad Sci USA 81:1991–1995

    Article  PubMed  CAS  Google Scholar 

  • Dennis K, Fan T, Geiman T, Yan Q, Muegge K (2001) Lsh, a member of the SNF2 family, is required for genome-wide methylation. Genes Dev 15:2940–2944

    Article  PubMed  CAS  Google Scholar 

  • Finnegan EJ, Peacock J, Dennis E (1996) Reduced DNA methylation in Arabidopsis thaliana results in abnormal plant development. Proc Natl Acad Sci USA 93:8449–8454

    Article  PubMed  CAS  Google Scholar 

  • Habu Y, Mathieu O, Tariq M, Probst AV, Smathajitt C, Zhu T, Paszkowski J (2006) Epigenetic regulation of transcription in intermediate heterochromatin. EMBO Rep 7:1279–1284

    Article  PubMed  CAS  Google Scholar 

  • Hirochika H (2001) Contribution of the Tos17 retrotransposon to rice functional genomics. Curr Opin Plant Biol 4:118–122

    Article  PubMed  CAS  Google Scholar 

  • Hirochika H, Fukuchi A, Kikuchi F (1992) Retrotransposon families in rice. Mol Gen Genet 233:209–216

    Article  PubMed  CAS  Google Scholar 

  • Hirochika H, Sugimoto K, Otsuki Y, Tsugawa H, Kanda M (1996) Retrotransposons of rice involved in mutations induced by tissue culture. Proc Natl Acad Sci USA 93:7783–7788

    Article  PubMed  CAS  Google Scholar 

  • Hirochika H, Okamoto H, Kakutani T (2000) Silencing of retrotransposons in Arabidopsis and reactivation by the ddm1 mutation. Plant Cell 12:357–369

    PubMed  CAS  Google Scholar 

  • Huang J, Zhang K, Shen Y, Huang Z, Li M, Tang D, Gu M, Chang Z (2009) Identification of a high frequency transposon induced by tissue culture, nDaiZ, a member of the hAT family in rice. Genomics 93:274–281

    Article  PubMed  CAS  Google Scholar 

  • Jeddeloh JA, Stokes TL, Richards EJ (1999) Maintenance of genomic methylation requires a SWI2/SNF2-like protein. Nat Genet 22:94–97

    Article  PubMed  CAS  Google Scholar 

  • Johnson L, Cao X, Jacobsen S (2002) Interplay between two epigenetic marks. DNA methylation and histone H3 lysine 9 methylation. Curr Biol 12:1360

    Article  PubMed  CAS  Google Scholar 

  • Kakutani T, Jeddeloh J, Flowers S, Munakata K, Richards E (1996) Developmental abnormalities and epimutations associated with DNA hypomethylation mutations. Proc Natl Acad Sci USA 93:12406–12411

    Article  PubMed  CAS  Google Scholar 

  • Kankel MW, Ramsey DE, Stokes TL, Flowers SK, Haag JR, Jeddeloh JA, Riddle NC, Verbsky ML, Richards EJ (2003) Arabidopsis MET1 cytosine methyltransferase mutants. Genetics 163:1109–1122

    PubMed  CAS  Google Scholar 

  • Kouzminova EA, Selker EU (2001) dim-2 encodes a DNA methyltransferase responsible for all known cytosine methylation in Neurospora. EMBO J 20:4309–4323

    Article  PubMed  CAS  Google Scholar 

  • Kurata N, Nagamura Y, Yamamoto K, Harushima Y, Sue WuJ, Antonio BA, Shomura A, Shimizu T, Lin S-Y, Inoue T, Fukuda A, Shimano T, Kuboki Y, Toyama T, Miyamoto Y, Kirihara T, Hayasaka K, Miyao A, Monna L, Zhong HS, Tamura Y, Wang Z-X, Momma T, Umehara Y, Yano M, Sasaki T, Minobe Y (1994) A 300 kilobase interval genetic map of rice including 883 expressed sequences. Nat Genet 8:365–372

    Article  PubMed  CAS  Google Scholar 

  • Li E, Bestor TH, Jaenisch R (1992) Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69:915–926

    Article  PubMed  CAS  Google Scholar 

  • Lindroth AM, Cao X, Jackson JP, Zilberman D, McCallum CM, Henikoff S, Jacobsen SE (2001) Requirement of CHROMOMETHYLASE3 for maintenance of CpXpG methylation. Science 292:2077–2080

    Article  PubMed  CAS  Google Scholar 

  • Lippman Z, May B, Yordan C, Singer T, Martienssen R (2003) Distinct mechanisms determine transposon inheritance and methylation via small interfering RNA and histone modification. PLoS Biol 1:E67

    Article  PubMed  Google Scholar 

  • Lippman Z, Gendrel A-V, Black M, Vaughn MA, Dedhia N, McCombie WR, Lavine K, Mittal V, May B, Kasschau KD, Carrington JC, Doerge RW, Colot V, Martienssen R (2004) Roles of transposable elements in heterochromatin and epigenetic control. Nature 430:471–476

    Article  PubMed  CAS  Google Scholar 

  • Miura A, Yonebayashi S, Watanabe K, Toyama T, Shimada H, Kakutani T (2001) Mobilization of transposons by a mutation abolishing full DNA methylation in Arabidopsis. Nature 411:212–214

    Article  PubMed  CAS  Google Scholar 

  • Miura A, Kato M, Watanabe K, Kawabe A, Kotani H, Kakutani T (2004) Genomic localization of endogenous mobile CACTA family transposons in natural variants of Arabidopsis thaliana. Mol Genet Genomics 270:524–532

    Article  PubMed  CAS  Google Scholar 

  • Naito K, Cho E, Tang G, Campbell MA, Yano K, Okumoto Y, Tanisaka T, Wessler SR (2006) Dramatic amplification of a rice transposable element during recent domestication. Proc Natl Acad Sci USA 103:17620–17625

    Article  PubMed  CAS  Google Scholar 

  • Ronemus MJ, Galbiati M, Ticknor C, Chen J, Dellaporta SL (1996) Demethylation-induced developmental pleiotropy in Arabidopsis. Science 273:654–657

    Article  PubMed  CAS  Google Scholar 

  • Sato Y, Antonio B, Namiki N, Motoyama R, Sugimoto K, Takehisa H, Minami H, Kamatsuki K, Kusaba M, Hirochika H, Nagamura Y (2011) Field transcriptome revealed critical developmental and physiological transitions involved in the expression of growth potential in japonica rice. BMC Plant Biol 11:10

    Article  PubMed  CAS  Google Scholar 

  • Saze H, Scheid OM, Paszkowski J (2003) Maintenance of CpG methylation is essential for epigenetic inheritance during plant gametogenesis. Nat Genet 34:65–69

    Article  PubMed  CAS  Google Scholar 

  • Singer T, Yordan C, Martienssen RA (2001) Robertson’s Mutator transposons in A. thaliana are regulated by the chromatin-remodeling gene Decrease in DNA Methylation (DDM1). Genes Dev 15:591–602

    Article  PubMed  CAS  Google Scholar 

  • Steimer A, Amedeo P, Afsar K, Fransz P, Mittelsten Scheid O, Paszkowski J (2000) Endogenous targets of transcriptional gene silencing in Arabidopsis. Plant Cell 12:1165–1178

    PubMed  CAS  Google Scholar 

  • Takaiwa F, Kikuchi S, Ohno K (1990) The complete nucleotide sequence of the intergenic spacer between 25S and 17S rDNAs in rice. Plant Mol Biol 15:933–935

    Article  PubMed  CAS  Google Scholar 

  • Toki S (1997) Rapid and efficient Agrobacterium-mediated transformation in rice. Plant Mol Biol Rep 15:16–21

    Article  CAS  Google Scholar 

  • Tsugane K, Maekawa M, Takagi K, Takahara H, Qian Q, Eun CH, Iida S (2006) An active DNA transposon nDart causing leaf variegation and mutable dwarfism and its related elements in rice. Plant J 45:46–57

    Article  PubMed  CAS  Google Scholar 

  • Tsukahara S, Kobayashi A, Kawabe A, Mathieu O, Miura A, Kakutani T (2009) Bursts of retrotransposition reproduced in Arabidopsis. Nature 461:423–426

    Article  PubMed  CAS  Google Scholar 

  • Vongs A, Kakutani T, Martienssen RA, Richards EJ (1993) Arabidopsis thaliana DNA methylation mutants. Science 260:1926–1928

    Article  PubMed  CAS  Google Scholar 

  • Walbot V (2000) Saturation mutagenesis using maize transposons. Curr Opin Plant Biol 3:103–107

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Y. Iguchi, K. Munakata, A. Terui, K. Hioki, and M. Arai for technical assistance. Special thanks to S. Iida for comments on the manuscript, H. Hirochika, H. Ohtsubo, F. Takaiwa, and S. Tsuchimoto for rice DNA clones and sequences used for probes. This work was supported by Grant-in-Aid for Creative Scientific Research 14GS0321 to TK and for Scientific Research (C) 24580016 to YH.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Makoto Takano, Tetsuji Kakutani or Yoshiki Habu.

Additional information

Communicated by S. Hohmann.

H. Higo and M. Tahir contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 613 kb)

Supplementary material 2 (DOC 157 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Higo, H., Tahir, M., Takashima, K. et al. DDM1 (Decrease in DNA Methylation) genes in rice (Oryza sativa). Mol Genet Genomics 287, 785–792 (2012). https://doi.org/10.1007/s00438-012-0717-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-012-0717-5

Keywords