Skip to main content

Advertisement

Log in

Thermodynamic and molecular analysis of the AbrB-binding sites within the phyC-region of Bacillus amyloliquefaciens FZB45

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

AbrB is a global regulator of transition state that is known to repress more than 100 genes in Bacillus species. Although AbrB is involved in the regulation of most cellular processes, a conserved binding motif seems to be elusive. Thus, the mechanism of AbrB-mediated transcriptional control is still unclear. In our previous work we identified two separate AbrB-binding sites within phytase gene region (phyC) of Bacillus amyloliquefaciens FZB45, whose integrity is essential for repression. Comparable architecture of AbrB-binding sites is also described for tycA that encodes an antibiotic synthesis enzyme. Considering the size of the AbrB tetramer (56 kDa) and other AbrB binding motifs (~20 to 98 bp) we hypothesized preferred binding positions within both AbrB sites of phyC that exhibit higher affinities to AbrB. Thus, we used surface plasmon resonance (SPR) to study the binding kinetics between AbrB and 40-bp ds-oligonucleotides that were derived from both binding sites. Surface plasmon resonance sensorgrams revealed strong binding kinetics that showed nearly no dissociation and positive cooperativity of the AbrB-DNA interaction to the whole AbrB-binding site 2 and to a small part of AbrB-binding site 1. Using chemically modified DNA we found bases contacting AbrB mainly at one face of the DNA-helix within a core region separated by one helical turn each. High content of modified guanines presented in the control reaction of the KMnO4 interference assay indicated distortion of the DNA-structure of phyC. In vitro transcription assays and base substitutions within the core region support this idea and the cooperativity of AbrB binding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bobay BG, Benson L, Naylor S, Feeney B, Clark AC, Goshe MB, Strauch MA, Thompson R, Cavanagh J (2004) Evaluation of the DNA binding tendencies of the transition state regulator AbrB. Biochemistry 43(51):16106–16118

    Article  PubMed  CAS  Google Scholar 

  • Bobay BG, Andreeva A, Mueller GA, Cavanagh J, Murzin AG (2005) Revised structure of the AbrB N-terminal domain unifies a diverse superfamily of putative DNA-binding proteins. FEBS Lett 579(25):5669–5674

    Article  PubMed  CAS  Google Scholar 

  • Bobay BG, Mueller GA, Thompson RJ, Murzin AG, Venters RA, Strauch MA, Cavanagh J (2006) NMR structure of AbhN and comparison with AbrBN: FIRST insights into the DNA binding promiscuity and specificity of AbrB-like transition state regulator proteins. J Biol Chem 281(30):21399–21409

    Article  PubMed  CAS  Google Scholar 

  • Chumsakul O, Takahashi H, Oshima T, Hishimoto T, Kanaya S, Ogasawara N, Ishikawa S (2010) Genome-wide binding profiles of the Bacillus subtilis transition state regulator AbrB and its homolog Abh reveals their interactive role in transcriptional regulation. Nucleic Acids Research 39:414–428

    Article  PubMed  Google Scholar 

  • Coles M, Djuranovic S, Soding J, Frickey T, Koretke K, Truffault V, Martin J, Lupas AN (2005) AbrB-like transcription factors assume a swapped hairpin fold that is evolutionarily related to double-psi beta barrels. Structure 13(6):919–928

    Article  PubMed  CAS  Google Scholar 

  • Cosby WM, Zuber P (1997) Regulation of Bacillus subtilis sigmaH (spo0H) and AbrB in response to changes in external pH. J Bacteriol 179(21):6778–6787

    PubMed  CAS  Google Scholar 

  • Dame RT, Luijsterburg MS, Krin E, Bertin PN, Wagner R, Wuite GJ (2005) DNA bridging: a property shared among H-NS-like proteins. J Bacteriol 187(5):1845–1848

    Article  PubMed  CAS  Google Scholar 

  • Di Primo C, Lebars I (2007) Determination of refractive index increment ratios for protein-nucleic acid complexes by surface plasmon resonance. Anal Biochem 368(2):148–155

    Article  PubMed  CAS  Google Scholar 

  • Fujita M, Sadaie Y (1998) Rapid isolation of RNA polymerase from sporulating cells of Bacillus subtilis. Gene 221(2):185–190

    Article  PubMed  CAS  Google Scholar 

  • Furbass R, Marahiel MA (1991) Mutant analysis of interaction of the Bacillus subtilis transcription regulator AbrB with the antibiotic biosynthesis gene tycA. FEBS Lett 287(1–2):153–156

    PubMed  CAS  Google Scholar 

  • Furbass R, Gocht M, Zuber P, Marahiel MA (1991) Interaction of AbrB, a transcriptional regulator from Bacillus subtilis with the promoters of the transition state-activated genes tycA and spoVG. Mol Gen Genet 225(3):347–354

    Article  PubMed  CAS  Google Scholar 

  • Iida S, Hayatsu H (1970) The permanganate oxidation of thymine. Biochim Biophys Acta (BBA) (Nucl Acids Prot Synth) 213(1):1–13

    Article  CAS  Google Scholar 

  • Kahl BF, Paule MR (2001) The Use of Diethyl Pyrocarbonate and Potassium Permanganate as Probes for Strand Separation and Structural Distortions in DNA. In: Moss T (ed) DNA-protein interactions: principles and protocols. Methods in Moloecular Biology, vol 148. Humana Press, Totowa

  • Klein W, Marahiel MA (2002) Structure-function relationship and regulation of two Bacillus subtilis DNA-binding proteins, HBsu and AbrB. J Mol Microbiol Biotechnol 4(3):323–329

    PubMed  CAS  Google Scholar 

  • Makarewicz O, Dubrac S, Msadek T, Borriss R (2006) Dual role of the PhoP approximately P response regulator: Bacillus amyloliquefaciens FZB45 phytase gene transcription is directed by positive and negative interactions with the phyC promoter. J Bacteriol 188(19):6953–6965

    Article  PubMed  CAS  Google Scholar 

  • Makarewicz O, Neubauer S, Preusse C, Borriss R (2008) Transition state regulator AbrB inhibits transcription of Bacillus amyloliquefaciens FZB45 phytase through binding at two distinct sites located within the extended phyC promoter region. J Bacteriol 190(19):6467–6474

    Article  PubMed  CAS  Google Scholar 

  • Phillips ZE, Strauch MA (2002) Bacillus subtilis sporulation and stationary phase gene expression. Cell Mol Life Sci 59(3):392–402

    Article  PubMed  CAS  Google Scholar 

  • Powar VK, Jagannathan V (1982) Purification and properties of phytate-specific phosphatase from Bacillus subtilis. J Bacteriol 151(3):1102–1108

    PubMed  CAS  Google Scholar 

  • Qian Q, Lee CY, Helmann JD, Strauch MA (2002) AbrB is a regulator of the sigma(W) regulon in Bacillus subtilis. FEMS Microbiol Lett 211(2):219–223

    PubMed  CAS  Google Scholar 

  • Rubin CM, Schmid CW (1980) Pyrimidine-specific chemical reactions useful for DNA sequencing. Nucleic Acids Res 8(20):4613–4619

    Article  PubMed  CAS  Google Scholar 

  • Shafikhani SH, Mandic-Mulec I, Strauch MA, Smith I, Leighton T (2002) Postexponential regulation of sin operon expression in Bacillus subtilis. J Bacteriol 184(2):564–571

    Article  PubMed  CAS  Google Scholar 

  • Siebenlist U, Gilbert W (1980) Contacts between Escherichia coli RNA polymerase and an early promoter of phage T7. Proc Natl Acad Sci USA 77(1):122–126

    Article  PubMed  CAS  Google Scholar 

  • Strauch MA (1995a) Delineation of AbrB-binding sites on the Bacillus subtilis spo0H, kinB, ftsAZ, and pbpE promoters and use of a derived homology to identify a previously unsuspected binding site in the bsuB1 methylase promote. J Bacteriol 177(23):6999–7002

    PubMed  CAS  Google Scholar 

  • Strauch MA (1995b) In vitro binding affinity of the Bacillus subtilis AbrB protein to six different DNA target regions. J Bacteriol 177(15):4532–4536

    PubMed  CAS  Google Scholar 

  • Strauch MA (1995c) AbrB modulates expression and catabolite repression of a Bacillus subtilis ribose transport operon. J Bacteriol 177(23):6727–6731

    Google Scholar 

  • Strauch MA, Ayazifar M (1995) Bent DNA is found in some, but not all, regions recognized by the Bacillus subtilis AbrB protein. Mol Gen Genet 246(6):756–760

    Article  PubMed  CAS  Google Scholar 

  • Strauch MA, Hoch JA (1993) Transition-state regulators: sentinels of Bacillus subtilis post-exponential gene expression. Mol Microbiol 7(3):337–342

    Article  PubMed  CAS  Google Scholar 

  • Strauch MA, Spiegelman GB, Perego M, Johnson WC, Burbulys D, Hoch JA (1989) The transition state transcription regulator abrB of Bacillus subtilis is a DNA binding protein. EMBO J 8(5):1615–1621

    PubMed  CAS  Google Scholar 

  • Sullivan DM, Bobay BG, Kojetin DJ, Thompson RJ, Rance M, Strauch MA, Cavanagh J (2008) Insights into the nature of DNA binding of AbrB-like transcription factors. Structure 16(11):1702–1713

    Article  PubMed  CAS  Google Scholar 

  • Vaughn JL, Feher V, Naylor S, Strauch MA, Cavanagh J (2000) Novel DNA binding domain and genetic regulation model of Bacillus subtilis transition state regulator abrB. Nat Struct Biol 7(12):1139–1146

    Article  PubMed  CAS  Google Scholar 

  • Xu K, Strauch MA (1996) In vitro selection of optimal AbrB-binding sites: comparison to known in vivo sites indicates flexibility in AbrB binding and recognition of three-dimensional DNA structures. Mol Microbiol 19(1):145–158

    Article  PubMed  CAS  Google Scholar 

  • Xu K, Strauch MA (2001) DNA-binding activity of amino-terminal domains of the Bacillus subtilis AbrB protein. J Bacteriol 183(13):4094–4098

    Article  PubMed  CAS  Google Scholar 

  • Yao F, Strauch MA (2005) Independent and interchangeable multimerization domains of the AbrB, Abh, and SpoVT global regulatory proteins. J Bacteriol 187(18):6354–6362

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Financial support given within the Deutsche Forschungsgemeinschaft, DFG (Grant BO 1113/9-1 to R.B.), is gratefully acknowledged. The authors thank Tobias Werther from FMP (Leibniz-Institut für Molekulare Pharmakologie) for introduction to the Biacore-technique. The authors also thank Christiane Müller for technical support and sequencing and Alexandra Koumoutsi for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliwia Makarewicz.

Additional information

Communicated by M. Hecker.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neubauer, S., Borriss, R. & Makarewicz, O. Thermodynamic and molecular analysis of the AbrB-binding sites within the phyC-region of Bacillus amyloliquefaciens FZB45. Mol Genet Genomics 287, 111–122 (2012). https://doi.org/10.1007/s00438-011-0666-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-011-0666-4

Keywords

Navigation