Skip to main content

Advertisement

Log in

Characterization of genomic imprinting effects and patterns with parametric accelerated failure time model

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Genomic imprinting, a genetic phenomenon of non-equivalent allele expression that depends on parental origins, has been ubiquitously observed in nature. It does not only control the traits of growth and development but also may be responsible for survival traits. Based on the accelerated failure time model, we construct a general parametric model for mapping the imprinted QTL (iQTL). Within the framework of interval mapping, maximum likelihood estimation of iQTL parameters is implemented via EM algorithm. The imprinting patterns of the detected iQTL are statistically tested according to a series of null hypotheses. BIC model selection criterion is employed to choose an optimal baseline hazard function with maximum likelihood and parsimonious parameters. Simulations are used to validate the proposed mapping procedure. A published dataset from a mouse model system was used to illustrate the proposed framework. Results show that among the five commonly used survival distributions, Log-logistic distribution is the optimal baseline hazard function for mapping QTL of hyperoxic acute lung injury (HALI) survival; under the log-logistic distribution, four QTLs were identified, in which only one QTL was inherited in Mendelian fashion, whereas others were imprinted in different imprinting patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Broman KW (2003) Mapping quantitative trait loci in the case of a spike in the phenotype distribution. Genetics 163:1169–1175

    PubMed  Google Scholar 

  • Cheng JY, Tzeng S (2009) Parametric and semiparametric methods for mapping quantitative trait loci. Comput Statist Data Anal 53:1843–1849

    Article  Google Scholar 

  • Cheverud JM, Hager R, Roseman C, Fawcett G, Wang B, Wolf JB (2008) Genomic imprinting effects on adult body composition in mice. Proc Natl Acad Sci USA 105:4253–4258

    Article  PubMed  CAS  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    PubMed  CAS  Google Scholar 

  • Cox D, Oakes D (1984) Analysis of survival data. Chapman and Hall, London

    Google Scholar 

  • Cui Y (2007) A statistical framework for genome-wide scanning and testing of imprinted quantitative trait loci. J Theor Biol 244:115–126

    Article  PubMed  CAS  Google Scholar 

  • Cui Y, Lu Q, Cheverud JM, Littell RC, Wu R (2006) Model for mapping imprinted quantitative trait loci in an inbred F2 design. Genomics 87:543–551

    Article  PubMed  CAS  Google Scholar 

  • Cui Y, Cheverud JM, Wu R (2007) A statistical model for dissecting genomic imprinting through genetic mapping. Genetica 130:227–239

    Article  PubMed  Google Scholar 

  • de Koning DJ, Rattink AP, Harlizius B, van Arendonk JA, Brascamp EW, Groenen MA (2000) Genome-wide scan for body composition in pigs reveals important role of imprinting. Proc Natl Acad Sci USA 97:7947–7950

    Article  PubMed  Google Scholar 

  • de Koning DJ, Bovenhuis H, van Arendonk JA (2002) On the detection of imprinted quantitative trait loci in experimental crosses of outbred species. Genetics 161:931–938

    PubMed  Google Scholar 

  • Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplet data via the EM algorithm. J R Statist Soc B 39:1–38

    Google Scholar 

  • Diao G, Lin DY (2005) Semiparametric methods for mapping quantitative trait loci with censored data. Biometrics 61:789–798

    Article  PubMed  Google Scholar 

  • Diao G, Lin DY, Zou F (2004) Mapping quantitative trait loci with censored observations. Genetics 168:1689–1698

    Article  PubMed  CAS  Google Scholar 

  • Fang Y (2006) A note on QTL detecting for censored traits. Genet Sel Evol 38:221–229

    Article  PubMed  CAS  Google Scholar 

  • Hager R, Cheverud JM, Wolf JB (2009) Relative contribution of additive, dominance, and imprinting effects to phenotypic variation in body size and growth between divergent selection lines of mice. Evolution 63:1118–1128

    Article  PubMed  Google Scholar 

  • Hanson RL, Kobes S, Lindsay RS, Knowler WC (2001) Assessment of parent-of-origin effects in linkage analysis of quantitative traits. Am J Hum Genet 68:951–962

    Article  PubMed  CAS  Google Scholar 

  • Jin Z, Lin DY, Wei LJ, Ying Z (2003) Rank-based inference for the accelerated failure time model. Biometrika 90:341–353

    Article  Google Scholar 

  • Kalbfleisch JD, Prentice RL (2002) The statistical analysis of failure time data. Wiley, New York

    Book  Google Scholar 

  • Kao CH, Zeng ZB, Teasdale RD (1999) Multiple interval mapping for quantitative trait loci. Genetics 152:1203–1216

    PubMed  CAS  Google Scholar 

  • Knott SA, Elsen JM, Haley CS (1996) Methods for multiple-marker mapping of quantitative trait loci in half-sib populations. Theor Appl Genet 93:71–80

    Article  Google Scholar 

  • Li G, Cui Y (2009) A statistical variance components framework for mapping imprinted quantitative trait loci in experimental crosses. J Prob Stat 2009:1–27

    Article  Google Scholar 

  • Li G, Cui Y (2010) A general statistical framework for dissecting parent-of-origin effects underlying triploid endosperm traits in flowering plants. Ann Appl Stat 3:1214–1233

    Article  Google Scholar 

  • Ma ZS, Bechinski EJ (2009) Accelerated failure time (AFT) modeling for the development and survival of Russian wheat aphid, Diuraphis noxia (Mordvilko). Popul Ecol 51:543–548

    Article  Google Scholar 

  • Mantey C, Brockmann GA, Kalm E, Reinsch N (2005) Mapping and exclusion mapping of genomic imprinting effects in mouse F2 families. J Hered 96:329–338

    Article  PubMed  CAS  Google Scholar 

  • Moreno CR, Elsen JM, Le Roy P, Ducrocq V (2005) Interval mapping methods for detecting QTL affecting survival and time-to-event phenotypes. Genet Res 85:139–149

    Article  PubMed  CAS  Google Scholar 

  • Pfeifer K (2000) Mechanisms of genomic imprinting. Am J Hum Genet 67:777–787

    Article  PubMed  CAS  Google Scholar 

  • Prows DR, Hafertepen AP, Gibbons WJ Jr, Winterberg AV, Nick TG (2007a) A genetic mouse model to investigate hyperoxic acute lung injury survival. Physiol Genomics 30(3):262–270

    Google Scholar 

  • Prows DR, Hafertepen AP, Winterberg AV, Gibbons WJ Jr, Liu C, Nick TG (2007b) Genetic analysis of hyperoxic acute lung injury survival in reciprocal intercross mice. Physiol Genomics 30(3):271–281

    Google Scholar 

  • Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6:461–464

    Article  Google Scholar 

  • Shete S, Amos CI (2002) Testing for genetic linkage in families by a variance-components approach in the presence of genomic imprinting. Am J Hum Genet 70:751–757

    Article  PubMed  CAS  Google Scholar 

  • Sillanpää MJ, Arjas E (1998) Bayesian mapping of multiple quantitative trait loci from incomplete inbred line cross data. Genetics 148:1373–1388

    PubMed  Google Scholar 

  • Symons RC, Daly MJ, Fridlyand J, Speed TP, Cook WD, Gerondakis S, Harris AW, Foote SJ (2002) Multiple genetic loci modify susceptibility to plasmacytoma-related morbidity in E(mu)-v-abl transgenic mice. Proc Natl Acad Sci USA 99:11299–11304

    Article  PubMed  CAS  Google Scholar 

  • Tuiskula-Haavisto M, de Koning DJ, Honkatukia M, Schulman NF, Maki-Tanila A, Vilkki J (2004) Quantitative trait loci with parent-of-origin effects in chicken. Genet Res 84:57–66

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Zhang YM, Li X, Masinde GL, Mohan S, Baylink DJ, Xu S (2005) Bayesian shrinkage estimation of quantitative trait loci parameters. Genetics 170:465–480

    Article  PubMed  CAS  Google Scholar 

  • Wolf JB, Cheverud JM, Roseman C, Hager R (2008) Genome-wide analysis reveals a complex pattern of genomic imprinting in mice. PLoS Genet 4:1–12

    Article  Google Scholar 

  • Yang R, Wang X, Wu Z, Prows DR, Lin M (2010) Bayesian model selection for characterizing genomic imprinting effects and patterns. Bioinformatics 26:235–241

    Article  PubMed  CAS  Google Scholar 

  • Yi N (2004) A unified Markov chain Monte Carlo framework for mapping multiple quantitative trait loci. Genetics 167:967–975

    Article  PubMed  CAS  Google Scholar 

  • Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work is financially supported by the National Natural Science Foundation of China (30972077).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Runqing Yang.

Additional information

Communicated by S. Hohmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, X., Fang, M., Li, J. et al. Characterization of genomic imprinting effects and patterns with parametric accelerated failure time model. Mol Genet Genomics 287, 67–75 (2012). https://doi.org/10.1007/s00438-011-0661-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-011-0661-9

Keywords

Navigation