Rapid and cost-effective screening of newly identified microsatellite loci by high-resolution melting analysis

Abstract

This study describes a new method for identifying microsatellite loci that will reliably amplify and show high degree of polymorphism in a given species. Microsatellites are the most powerful codominant markers available today, but the development of novel loci remains a labour-intensive and expensive process. In de novo isolation, approaches using next generation sequencing (NGS) are gradually replacing ones using Escherichia coli libraries, resulting in unparalleled numbers of candidate loci available. We present a systematic review of published microsatellite primer notes and show that, on average, about half of all candidate loci are lost due to insufficient PCR amplification, monomorphism or multicopy status in the genome, no matter what isolation strategy is used. Thus, the screening of candidate loci remains a major step in marker development. Re-assessing capillary-electrophoresis genotyped loci via high-resolution melting analysis (HRM), we evaluate the usefulness of HRM for this step. We demonstrate its applicability in a genotyping case study and introduce a fast, HRM-based workflow for the screening of microsatellite loci. This workflow may readily be applied to NGS-based marker development and has the potential to cut the costs of traditional testing by half to three quarters.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Angers B, Bernatchez L (1997) Complex evolution of a salmonid microsatellite locus and its consequences in inferring allelic divergence from size information. Mol Biol Evol 14:230–238

    PubMed  CAS  Google Scholar 

  2. Arthofer W, Schlick-Steiner BC, Steiner FM, Konrad H, Espalader X et al (2005) Isolation of polymorphic microsatellite loci for the study of habitat fragmentation in the harvester ant Messor structor. Conserv Genet 6:859–861

    Article  Google Scholar 

  3. Arthofer W, Schlick-Steiner B, Steiner FM, Avtzis DN, Crozier R, Stauffer C (2007) Lessons from a beetle and an ant: coping with taxon-dependent differences in microsatellite development success. J Mol Evol 65:304–307

    PubMed  Article  CAS  Google Scholar 

  4. Barbará T, Palma-Silva C, Paggi G, Bered F, Fay M et al (2007) Cross-species transfer of nuclear microsatellite markers: potential and limitations. Mol Ecol 16:3759–3767

    PubMed  Article  Google Scholar 

  5. Beacham T, Candy J, Jonsen K, Supernault J, Wetklo M et al (2006) Estimation of stock composition and individual identification of Chinook Salmon across the Pacific rim by use of microsatellite variation. Trans Am Fish Soc 135:861–888

    Google Scholar 

  6. Castoe TA, Poole AW, Gu W, DeKoning APJ, Daza JM et al (2010) Rapid identification of thousands of copperhead snake (Agkistrodon contortrix) microsatellite loci from modest amounts of 454 shotgun genome sequence. Mol Ecol Resour 10:341–347

    PubMed  Article  CAS  Google Scholar 

  7. Chambers GK, MacAvoy ES (2000) Microsatellites: consensus and controversy. Comp Biochem Physiol B Biochem Mol Biol 126:455–476

    PubMed  Article  CAS  Google Scholar 

  8. Colson I, Goldstein DB (1999) Evidence for complex mutations at microsatellite loci in Drosophila. Genetics 152:617–627

    PubMed  CAS  Google Scholar 

  9. Dieringer D, Schlötterer C (2003) Two distinct modes of microsatellite mutation processes: evidence from the complete genomic sequences of nine species. Genome Res 13:2242–2251

    PubMed  Article  CAS  Google Scholar 

  10. Dobrowolski SF, Gray J, Miller T, Sears M (2009) Identifying sequence variants in the human mitochondrial genome using high-resolution melt (HRM) profiling. Hum Mutat 30:891–898

    PubMed  Article  CAS  Google Scholar 

  11. Dutech C, Enjalbert J, Fournier E, Delmotte F, Barres B et al (2007) Challenges of microsatellite isolation in fungi. Fungal Genet Biol 44:933–949

    PubMed  Article  CAS  Google Scholar 

  12. Ellegren H (2004) Microsatellites: simple sequences with complex evolution. Nat Rev Genet 5:435–445

    PubMed  Article  CAS  Google Scholar 

  13. Estoup A, Jarne P, Cornuet J (2002) Homoplasy and mutation model at microsatellite loci and their consequences for population genetics analysis. Mol Ecol 11:1591–1604

    PubMed  Article  CAS  Google Scholar 

  14. Fagerberg AJ, Fulton RE, Black WC (2001) Microsatellite loci are not abundant in all arthropod genomes: analyses in the hard tick, Ixodes scapularis and the yellow fever mosquito, Aedes aegypti. Insect Mol Biol 10:225–236

    PubMed  Article  CAS  Google Scholar 

  15. Glenn TC, Schable NA (2005) Isolating microsatellite DNA loci. In: Zimmer E, Roalson E (eds) Molecular evolution: producing the biochemical data. Academic Press, Maryland Heights, pp 202–222

    Google Scholar 

  16. Graham R (2005) Distinguishing different DNA heterozygotes by high-resolution melting. Clin Chem 51:1295–1298

    PubMed  Article  CAS  Google Scholar 

  17. Grimaldi M, Crouau-Roy B (1997) Microsatellite allelic homoplasy due to variable flanking sequences. J Mol Evol 44:336–340

    PubMed  Article  CAS  Google Scholar 

  18. Guichoux E, Lagache L, Wagner S, Chaumeil P, Léger P, et al. (2011) Current trends in microsatellite genotyping. Mol Ecol Resour. doi:10.1111/j.1755-0998.2011.03014.x

  19. Hess JE, Matala AP, Narum SR (2011) Comparison of SNPs and microsatellites for fine-scale application of genetic stock identification of Chinook salmon in the Columbia river basin. Mol Ecol Resour 11:137–149

    Google Scholar 

  20. Jarne P, Lagoda PJL (1996) Microsatellites, from molecules to populations and back. Trends Ecol Evol 11:424–429

    PubMed  Article  CAS  Google Scholar 

  21. Kofler R, Schlötterer C, Lelley T (2007) SciRoKo: a new tool for whole genome microsatellite search and investigation. Bioinformatics 23:1683–1685

    PubMed  Article  CAS  Google Scholar 

  22. MacDonald AJ, Sarre SD, FitzSimmons NN, Aitken N (2011) Determining microsatellite genotyping reliability and mutation detection ability: an approach using small-pool PCR from sperm DNA. Mol Genet Genomics 285:1–18

    PubMed  Article  CAS  Google Scholar 

  23. Mackay JF, Wright CD, Bonfiglioli RG (2008) A new approach to varietal identification in plants by microsatellite high resolution melting analysis: application to the verification of grapevine and olive cultivars. Plant Methods 4:8

    PubMed  Article  Google Scholar 

  24. Mader E, Lukas B, Novak J (2008) A strategy to setup codominant microsatellite analysis for high-resolution-melting-curve-analysis (HRM). BMC Genet 9:69

    PubMed  Article  Google Scholar 

  25. Mader E, Lohwasser U, Börner A, Novak J (2010) Population structures of genebank accessions of Salvia officinalis L. (Lamiaceae) revealed by high resolution melting analysis. Biochem Syst Ecol 38:178–186

    Article  CAS  Google Scholar 

  26. Meglécz E, Petenian F, Danchin E, D’Acier AC, Rasplus JY et al (2004) High similarity between flanking regions of different microsatellites detected within each of two species of Lepidoptera: Parnassius apollo and Euphydryas aurinia. Mol Ecol 13:1693–1700

    PubMed  Article  Google Scholar 

  27. Meglécz E, Costedoat C, Dubut V, Gilles A, Malausa T et al (2009) QDD: a user-friendly program to select microsatellite markers and design primers from large sequencing projects. Bioinformatics 26:403–404

    PubMed  Article  Google Scholar 

  28. Navajas MJ, Thistlewood HMA, Lagnel J, Hughes C (1998) Microsatellite sequences are under-represented in two mite genomes. Insect Mol Biol 7:249–256

    PubMed  Article  CAS  Google Scholar 

  29. Olejniczak M, Krzyzosiak WJ (2006) Genotyping of simple sequence repeat factors implicated in shadow band generation revisited. Electrophoresis 27:3724–3734

    PubMed  Article  Google Scholar 

  30. Primmer CR, Raudsepp T, Chowdhary BP, Møller AP, Ellegren H (1997) Low frequency of microsatellites in the avian genome. Genome Res 7:471–482

    PubMed  CAS  Google Scholar 

  31. Santana QC, Coetzee MPA, Steenkamp ET, Mlonyeni OX, Hammond GNA et al (2009) Microsatellite discovery by deep sequencing of enriched genomic libraries. Biotechniques 46:217–223

    PubMed  Article  CAS  Google Scholar 

  32. Schuelke M (2000) An economic method for the fluorescent labelling of PCR fragments. Nat Biotechnol 18:233–234

    PubMed  Article  CAS  Google Scholar 

  33. Seeb JE, Pascal CE, Grau ED, Seeb LW, Templin WD et al (2011) Transcriptome sequencing and high-resolution melt analysis advance single nucleotide polymorphism discovery in duplicated salmonids. Mol Ecol Resour 11:335–348

    PubMed  Article  CAS  Google Scholar 

  34. Smith BL, Lu C, Bremer AJR (2010) High-resolution melting analysis (HRMA): a highly sensitive inexpensive genotyping alternative for population studies. Mol Ecol Resour 10:193–196

    PubMed  Article  CAS  Google Scholar 

  35. Steiner FM, Arthofer W, Schlick-Steiner BC, Crozier R, Stauffer C (2007) Twenty four new microsatellite markers in two invasive pavement ants, Tetramorium sp. E and T. tsushimae (Hymenoptera: Formicidae). Conserv Genet 9:757–759

    Article  Google Scholar 

  36. Steiner FM, Seifert B, Moder K, Schlick-Steiner BC (2010) A multisource solution for a complex problem in biodiversity research: description of the cryptic ant species Tetramorium alpestre sp. n. (Hymenoptera: Formicidae). Zool Anz 249:223–254

    Article  Google Scholar 

  37. Tindall EA, Petersen DC, Woodbridge P, Schipany K, Hayes VM (2009) Assessing high-resolution melt curve analysis for accurate detection of gene variants in complex DNA fragments. Hum Mutat 30:876–883

    PubMed  Article  CAS  Google Scholar 

  38. Valdes AM, Slatkin M, Freimer NB (1993) Allele frequencies at microsatellite loci: the stepwise mutation model revisited. Genetics 133:737–749

    PubMed  CAS  Google Scholar 

  39. Vanpé C, Buschiazzo E, Abdelkrim J, Morrow G, Nicol SC et al (2009) Development of microsatellite markers for the short-beaked echidna using three different approaches. Aust J Zool 57:219–224

    Article  Google Scholar 

  40. Wan QH, Wu H, Fujihara T, Fang SG (2004) Which genetic marker for which conservation genetics issue? Electrophoresis 25:2165–2176

    PubMed  Article  CAS  Google Scholar 

  41. Wittwer CT, Reed GH, Gundry CN, Vandersteen JG, Pryor RJ (2003) High-resolution genotyping by amplicon melting analysis using LCGreen. Clin Chem 49:853–860

    PubMed  Article  CAS  Google Scholar 

  42. Wu SB, Wirthenson M, Hunt P, Gibson JP, Sedgely M (2008) High resolution melting analysis of almond SNPs derived from ESTs. Theor Appl Genet 118:1–14

    PubMed  Article  CAS  Google Scholar 

  43. Wu SB, Tavassolian I, Rabiei G, Hunt P, Wirthenson M et al (2009) Mapping SNP-anchored genes using high-resolution melting analysis in almond. Mol Genet Genom 282:273–281

    Article  CAS  Google Scholar 

  44. Zane L, Bargelloni L, Patarnello T (2002) Strategies for microsatellite isolation: a review. Mol Ecol 11:1–16

    PubMed  Article  CAS  Google Scholar 

  45. Zhou L, Myers AN, Vandersteen JG, Wang L, Wittwer CT (2004) Closed-tube genotyping with unlabeled oligonucleotide probes and a saturating DNA dye. Clin Chem 50:1328–1335

    PubMed  Article  CAS  Google Scholar 

  46. Zhou L, Wang L, Palais R, Pryor R, Wittwer CT (2005) High-resolution DNA melting analysis for simultaneous mutation scanning and genotyping in solution. Clin Chem 51:1770–1777

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Clemens Folterbauer for assistance in the genotyping case study and HRM data analysis, Lucia Russo for sampling of Tetramorium alpestre, and Communicating Editor Stefan Hohmann and two anonymous referees for constructive input which significantly improved the paper.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Arthofer.

Additional information

F. M. Steiner and B. C. Schlick-Steiner contributed equally to this work.

Communicated by S. Hohmann.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 131 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Arthofer, W., Steiner, F.M. & Schlick-Steiner, B.C. Rapid and cost-effective screening of newly identified microsatellite loci by high-resolution melting analysis. Mol Genet Genomics 286, 225 (2011). https://doi.org/10.1007/s00438-011-0641-0

Download citation

Keywords

  • High-resolution melting analysis
  • HRM
  • Microsatellite
  • De novo isolation
  • Molecular marker
  • Next generation sequencing
  • Population genetics