Skip to main content

Advertisement

Log in

Effect of rad50 mutation on illegitimate recombination in Saccharomyces cerevisiae

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Genes in the RAD52 epistasis group are involved in repairing DNA double-stranded breaks via homologous recombination. We have previously shown that RAD50 is involved in mitotic nonhomologous integration but not in homologous integration. However, the role of Rad50 in nonhomologous integration has not previously been examined. In the current work, we report that the rad50∆ mutation caused a tenfold decrease in the frequency of nonhomologous integration with the majority of nonhomologous integrants showing an unstable Ura+ phenotype. Sequencing analysis of the integration target sites showed that integration events of both ends of the integrating vector in the rad50∆ mutant occurred at different chromosomal locations, resulting in large deletions or translocations on the genomic insertion sites. Interestingly, 47% of events in the rad50∆ mutant were integrated into repetitive sequences including rDNA locus, telomeres and Ty elements and 27% of events were integrated into non-repetitive sequences as compared to 11% of events integrated into rDNA and 70% into non-repetitive sequences in the wild-type cells. These results showed that deletion of RAD50 significantly changes the distribution of different classes of integration events, suggesting that Rad50 is required for nonhomologous integration at non-repetitive sequences more so than at repetitive ones. Furthermore, Southern analysis indicated that half of the events contained deletions at one or at both ends of the integrating DNA fragment, suggesting that Rad50 might have a role in protecting free ends of double-strand breaks. In contrast to the rad50∆ mutant, the rad50S mutant (separation of function allele) slightly increases the frequency of nonhomologous integration but the distribution of integration events is similar to that of wild-type cells with the majority of events integrated into a chromosomal locus. Our results suggest that deletion of RAD50 may block the major pathway of nonhomologous integration into a non-repetitive chromosomal locus and Rad50 may be involved in tethering two ends of the integrating DNA into close proximity that facilitates nonhomologous integration of both ends into a single chromosomal locus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

DSBs:

Double stranded breaks

NHEJ:

Nonhomologous end-joining

IR:

Ionizing radiation

References

  • Alani E, Padmore R, Kleckner N (1990) Analysis of wild-type and rad50 mutants of yeast suggests an intimate relationship between meiotic chromosome synapsis and recombination. Cell 61(3):419–436

    Article  PubMed  CAS  Google Scholar 

  • Argueso JL, Westmoreland J, Mieczkowski PA, Gawel M, Petes TD, Resnick MA (2008) Double-strand breaks associated with repetitive DNA can reshape the genome. Proc Natl Acad Sci USA 105(33):11845–11850

    Article  PubMed  CAS  Google Scholar 

  • Boulton SJ, Jackson SP (1996) Saccharomyces cerevisiae Ku70 potentiates illegitimate DNA double-strand break repair and serves as a barrier to error-prone DNA repair pathways. EMBO J 15(18):5093–5103

    PubMed  CAS  Google Scholar 

  • Boulton SJ, Jackson SP (1998) Components of the Ku-dependent non-homologous end-joining pathway are involved in telomeric length maintenance and telomeric silencing. EMBO J 17(6):1819–1828

    Article  PubMed  CAS  Google Scholar 

  • Cao L, Alani E, Kleckner N (1990) A pathway for generation and processing of double-strand breaks during meiotic recombination in S. cerevisiae. Cell 61(6):1089–1101

    Article  PubMed  CAS  Google Scholar 

  • Chen C, Kolodner RD (1999) Gross chromosomal rearrangements in Saccharomyces cerevisiae replication and recombination defective mutants. Nat Genet 23(1):81–85

    Article  PubMed  CAS  Google Scholar 

  • Chen L, Trujillo K, Ramos W, Sung P, Tomkinson AE (2001) Promotion of Dnl4-catalyzed DNA end-joining by the Rad50/Mre11/Xrs2 and Hdf1/Hdf2 complexes. Mol Cell 8(5):1105–1115

    Article  PubMed  CAS  Google Scholar 

  • Chlebowicz E, Jachymczyk WJ (1979) Repair of MMS-induced DNA double-strand breaks in haploid cells of Saccharomyces cerevisiae, which requires the presence of a duplicate genome. Mol Gen Genet 167(3):279–286

    Article  PubMed  CAS  Google Scholar 

  • Connelly JC, Leach DR (2002) Tethering on the brink: the evolutionarily conserved Mre11–Rad50 complex. Trends Biochem Sci 27(8):410–418

    Article  PubMed  CAS  Google Scholar 

  • Denis CL, Young ET (1983) Isolation and characterization of the positive regulatory gene ADR1 from Saccharomyces cerevisiae. Mol Cell Biol 3(3):360–370

    PubMed  CAS  Google Scholar 

  • Difilippantonio MJ, Zhu J, Chen HT, Meffre E, Nussenzweig MC, Max EE, Ried T, Nussenzweig A (2000) DNA repair protein Ku80 suppresses chromosomal aberrations and malignant transformation. Nature 404(6777):510–514. doi:10.1038/35006670

    Article  PubMed  CAS  Google Scholar 

  • Ferguson DO, Sekiguchi JM, Chang S, Frank KM, Gao Y, DePinho RA, Alt FW (2000) The nonhomologous end-joining pathway of DNA repair is required for genomic stability and the suppression of translocations. Proc Natl Acad Sci USA 97(12):6630–6633. doi:10.1073/pnas.110152897110152897[pii]

    Article  PubMed  CAS  Google Scholar 

  • Fritze CE, Verschueren K, Strich R, Easton Esposito R (1997) Direct evidence for SIR2 modulation of chromatin structure in yeast rDNA. EMBO J 16(21):6495–6509

    Article  PubMed  CAS  Google Scholar 

  • Game JC (1993) DNA double-strand breaks and the RAD50–RAD57 genes in Saccharomyces. Semin Cancer Biol 2:73–83

    Google Scholar 

  • Gietz RD, Sugino A (1988) New yeast–Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene 74(2):527–534

    Article  PubMed  CAS  Google Scholar 

  • Giunta S, Belotserkovskaya R, Jackson SP (2010) DNA damage signaling in response to double-strand breaks during mitosis. J Cell Biol 190(2):197–207. doi:10.1083/jcb.200911156

    Google Scholar 

  • Grenon M, Gilbert C, Lowndes NF (2001) Checkpoint activation in response to double-strand breaks requires the Mre11/Rad50/Xrs2 complex. Nat Cell Biol 3(9):844–847

    Article  PubMed  CAS  Google Scholar 

  • Hefferin ML, Tomkinson AE (2005) Mechanism of DNA double-strand break repair by non-homologous end joining. DNA Repair (Amst) 4(6):639–648

    Article  CAS  Google Scholar 

  • Hopfner KP, Karcher A, Shin DS, Craig L, Arthur LM, Carney JP, Tainer JA (2000) Structural biology of Rad50 ATPase: ATP-driven conformational control in DNA double-strand break repair and the ABC-ATPase superfamily. Cell 101(7):789–800

    Article  PubMed  CAS  Google Scholar 

  • Howlett NG, Scuric Z, D’Andrea AD, Schiestl RH (2006) Impaired DNA double strand break repair in cells from Nijmegen breakage syndrome patients. DNA Repair (Amst) 5(2):251–257. doi:10.1016/j.dnarep.2005.10.004

    Article  CAS  Google Scholar 

  • Ivanov EL, Korolev VG, Fabre F (1992) XRS2, a DNA repair gene of Saccharomyces cerevisiae, is needed for meiotic recombination. Genetics 132(3):651–664

    PubMed  CAS  Google Scholar 

  • Khanna KK, Jackson SP (2001) DNA double-strand breaks: signaling, repair and the cancer connection. Nat Genet 27(3):247–254

    Article  PubMed  CAS  Google Scholar 

  • Kironmai KM, Muniyappa K (1997) Alteration of telomeric sequences and senescence caused by mutations in RAD50 of Saccharomyces cerevisiae. Genes Cells 2(7):443–455

    Article  PubMed  CAS  Google Scholar 

  • Kramer KM, Brock JA, Bloom K, Moore JK, Haber JE (1994) Two different types of double-strand breaks in Saccharomyces cerevisiae are repaired by similar RAD52-independent, nonhomologous recombination events. Mol Cell Biol 14(2):1293–1301

    PubMed  CAS  Google Scholar 

  • Krejci L, Chen L, Van Komen S, Sung P, Tomkinson A (2003) Mending the break: two DNA double-strand break repair machines in eukaryotes. Prog Nucleic Acid Res Mol Biol 74:159–201

    Article  PubMed  CAS  Google Scholar 

  • Lewis LK, Storici F, Van Komen S, Calero S, Sung P, Resnick MA (2004) Role of the nuclease activity of Saccharomyces cerevisiae Mre11 in repair of DNA double-strand breaks in mitotic cells. Genetics 166(4):1701–1713

    Article  PubMed  CAS  Google Scholar 

  • Lieber MR, Ma Y, Pannicke U, Schwarz K (2003) Mechanism and regulation of human non-homologous DNA end-joining. Nat Rev Mol Cell Biol 4(9):712–720

    Article  PubMed  CAS  Google Scholar 

  • Ma JL, Kim EM, Haber JE, Lee SE (2003) Yeast Mre11 and Rad1 proteins define a Ku-independent mechanism to repair double-strand breaks lacking overlapping end sequences. Mol Cell Biol 23(23):8820–8828

    Article  PubMed  CAS  Google Scholar 

  • Manivasakam P, Schiestl RH (1998) Nonhomologous end joining during restriction enzyme-mediated DNA integration in Saccharomyces cerevisiae. Mol Cell Biol 18(3):1736–1745

    PubMed  CAS  Google Scholar 

  • Milne GT, Jin S, Shannon KB, Weaver DT (1996) Mutations in two Ku homologs define a DNA end-joining repair pathway in Saccharomyces cerevisiae. Mol Cell Biol 16(8):4189–4198

    PubMed  CAS  Google Scholar 

  • Mimitou EP, Symington LS (2008) Sae2, Exo1 and Sgs1 collaborate in DNA double-strand break processing. Nature 455(7214):770–774. doi:10.1038/nature07312

    Article  PubMed  CAS  Google Scholar 

  • Moore JK, Haber JE (1996) Cell cycle and genetic requirements of two pathways of nonhomologous end-joining repair of double-strand breaks in Saccharomyces cerevisiae. Mol Cell Biol 16(5):2164–2173

    PubMed  CAS  Google Scholar 

  • Moreau S, Ferguson JR, Symington LS (1999) The nuclease activity of Mre11 is required for meiosis but not for mating type switching, end joining, or telomere maintenance. Mol Cell Biol 19(1):556–566

    PubMed  CAS  Google Scholar 

  • Orr-Weaver TL, Szostak JW, Rothstein RJ (1983) Genetic applications of yeast transformation with linear and gapped plasmids. Methods Enzymol 101:228–245

    Article  PubMed  CAS  Google Scholar 

  • Pastink A, Eeken JC, Lohman PH (2001) Genomic integrity and the repair of double-strand DNA breaks. Mutat Res 480–481:37–50

    PubMed  Google Scholar 

  • Petes TD (1980) Unequal meiotic recombination within tandem arrays of yeast ribosomal DNA genes. Cell 19(3):765–774

    Article  PubMed  CAS  Google Scholar 

  • Petes TD, Botstein D (1977) Simple Mendelian inheritance of the reiterated ribosomal DNA of yeast. Proc Natl Acad Sci USA 74(11):5091–5095

    Article  PubMed  CAS  Google Scholar 

  • Petes TD, Amlone RE, Symington LS (1991) Recombination in Yeast. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Pierce AJ, Jasin M (2001) NHEJ deficiency and disease. Mol Cell 8(6):1160–1161

    Article  PubMed  CAS  Google Scholar 

  • Raymond WE, Kleckner N (1993) RAD50 protein of S. cerevisiae exhibits ATP-dependent DNA binding. Nucleic Acids Res 21(16):3851–3856

    Article  PubMed  CAS  Google Scholar 

  • Riley J, Butler R, Ogilvie D, Finniear R, Jenner D, Powell S, Anand R, Smith JC, Markham AF (1990) A novel, rapid method for the isolation of terminal sequences from yeast artificial chromosome (YAC) clones. Nucleic Acids Res 18(10):2887–2890

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T et al (1989) Molecular cloning: a laboratory manual. Cold spring Harbor Laboratory Press, Cold spring Harbor

    Google Scholar 

  • Schiestl RH, Petes TD (1991) Integration of DNA fragments by illegitimate recombination in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 88(17):7585–7589

    Article  PubMed  CAS  Google Scholar 

  • Schiestl RH, Dominska M, Petes TD (1993) Transformation of Saccharomyces cerevisiae with nonhomologous DNA: illegitimate integration of transforming DNA into yeast chromosomes and in vivo ligation of transforming DNA to mitochondrial DNA sequences. Mol Cell Biol 13(5):2697–2705

    PubMed  CAS  Google Scholar 

  • Schiestl RH, Zhu J, Petes TD (1994) Effect of mutations in genes affecting homologous recombination on restriction enzyme-mediated and illegitimate recombination in Saccharomyces cerevisiae. Mol Cell Biol 14(7):4493–4500

    PubMed  CAS  Google Scholar 

  • Smith S, Gupta A, Kolodner RD, Myung K (2005) Suppression of gross chromosomal rearrangements by the multiple functions of the Mre11-Rad50-Xrs2 complex in Saccharomyces cerevisiae. DNA Repair (Amst) 4(5):606–617

    Article  CAS  Google Scholar 

  • Sugawara N, Haber JE (1992) Characterization of double-strand break-induced recombination: homology requirements and single-stranded DNA formation. Mol Cell Biol 12(2):563–575

    PubMed  CAS  Google Scholar 

  • Trujillo KM, Sung P (2001) DNA structure-specific nuclease activities in the Saccharomyces cerevisiae Rad50*Mre11 complex. J Biol Chem 276(38):35458–35464

    Article  PubMed  CAS  Google Scholar 

  • Trujillo KM, Roh DH, Chen L, Van Komen S, Tomkinson A, Sung P (2003) Yeast xrs2 binds DNA and helps target rad50 and mre11 to DNA ends. J Biol Chem 278(49):48957–48964

    Article  PubMed  CAS  Google Scholar 

  • Tsukamoto Y, Kato J, Ikeda H (1996) Effects of mutations of RAD50, RAD51, RAD52, and related genes on illegitimate recombination in Saccharomyces cerevisiae. Genetics 142(2):383–391

    PubMed  CAS  Google Scholar 

  • Tsukamoto Y, Taggart AK, Zakian VA (2001) The role of the Mre11-Rad50-Xrs2 complex in telomerase- mediated lengthening of Saccharomyces cerevisiae telomeres. Curr Biol 11(17):1328–1335

    Article  PubMed  CAS  Google Scholar 

  • van Gent DC, Hoeijmakers JH, Kanaar R (2001) Chromosomal stability and the DNA double-stranded break connection. Nat Rev Genet 2(3):196–206

    Article  PubMed  Google Scholar 

  • Westmoreland J, Ma W, Yan Y, Van Hulle K, Malkova A, Resnick MA (2009) RAD50 is required for efficient initiation of resection and recombinational repair at random, gamma-induced double-strand break ends. PLoS Genet 5(9):e1000656. doi:10.1371/journal.pgen.1000656

    Article  PubMed  Google Scholar 

  • Wiltzius JJ, Hohl M, Fleming JC, Petrini JH (2005) The Rad50 hook domain is a critical determinant of Mre11 complex functions. Nat Struct Mol Biol 12(5):403–407

    Article  PubMed  CAS  Google Scholar 

  • Woolford JL Jr (1991) The structure and biogenesis of yeast ribosomes. Adv Genet 29:63–118

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Paull TT (2005) The Mre11/Rad50/Xrs2 complex and non-homologous end-joining of incompatible ends in S. cerevisiae. DNA Repair 4(11):1281–1294

    Article  PubMed  CAS  Google Scholar 

  • Zhu J, Schiestl RH (1996) Topoisomerase I involvement in illegitimate recombination in Saccharomyces cerevisiae. Mol Cell Biol 16(4):1805–1812

    PubMed  CAS  Google Scholar 

  • Zhu Z, Chung WH, Shim EY, Lee SE, Ira G (2008) Sgs1 helicase and two nucleases Dna2 and Exo1 resect DNA double-strand break ends. Cell 134(6):981–994. doi:10.1016/j.cell.2008.08.037

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was in part supported by NIH grant No. 1 RO 1CA82473. CYC was supported by a training grant from the UC Toxic Substances Research and Teaching Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert H. Schiestl.

Additional information

Communicated by A. Aguilera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chan, C.Y., Zhu, J. & Schiestl, R.H. Effect of rad50 mutation on illegitimate recombination in Saccharomyces cerevisiae . Mol Genet Genomics 285, 471–484 (2011). https://doi.org/10.1007/s00438-011-0619-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-011-0619-y

Keywords

Navigation