Skip to main content
Log in

Giant yeast cells with nonrecyclable ribonucleotide reductase

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Ribonucleotide reductase (RNR) catalyzes the reduction of ribonucleotides to deoxyribonucleotides and thereby provides the precursors required for DNA synthesis and repair. In an attempt to test cell resistance to a permanent replicational stress, we constructed a mutant Saccharomyces cerevisiae strain containing exclusively nonrecyclable catalytic subunits of RNR that become inactivated following the reduction of one ribonucleoside diphosphate. In this rnr1C883A rnr3Δ mutant, the synthesis of each deoxyribonucleotide thus requires the production of one Rnr1C883A protein, which means that 26 million Rnr1C883A proteins (half the protein complement of a wild-type cell) have to be produced during each cell cycle. rnr1C883A rnr3Δ cells grow under constant replicational stress, as evidenced by the constitutive activation of the checkpoint effector Rad53, and their S phase is considerably extended compared to the wild type. rnr1C883A rnr3Δ mutants also display additional abnormalities such as a median cell volume increased by a factor of 8, and the presence of massive inclusion bodies. However, they exhibit a good plating efficiency and can be propagated indefinitely. rnr1C883A rnr3Δ cells, which can be used as a protein overexpression system, thus illustrate the robustness of S. cerevisiae to multiple physiological parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Binder M, Schanz M, Hartig A (1991) Vector-mediated overexpression of catalase A in the yeast Saccharomyces cerevisiae induces inclusion body formation. Eur J Cell Biol 54:305–312

    PubMed  CAS  Google Scholar 

  • Branzei D, Foiani M (2005) The DNA damage response during DNA replication. Curr Opin Cell Biol 17:568–575

    Article  PubMed  CAS  Google Scholar 

  • Branzei D, Foiani M (2006) The Rad53 signal transduction pathway: replication fork stabilization, DNA repair, and adaptation. Exp Cell Res 312:2654–2659

    Article  PubMed  CAS  Google Scholar 

  • Branzei D, Foiani M (2007) Interplay of replication checkpoints and repair proteins at stalled replication forks. DNA Repair (Amst) 6:994–1003

    Article  CAS  Google Scholar 

  • Camier S, Ma E, Leroy C, Pruvost A, Toledano M, Marsolier-Kergoat MC (2007) Visualization of ribonucleotide reductase catalytic oxidation establishes thioredoxins as its major reductants in yeast. Free Radic Biol Med 42:1008–1016

    Article  PubMed  CAS  Google Scholar 

  • Cook M, Tyers M (2007) Size control goes global. Curr Opin Biotechnol 18:341–350

    Article  PubMed  CAS  Google Scholar 

  • Cousens LS, Shuster JR, Gallegos C, Ku LL, Stempien MM, Urdea MS, Sanchez-Pescador R, Taylor A, Tekamp-Olson P (1987) High level expression of proinsulin in the yeast, Saccharomyces cerevisiae. Gene 61:265–275

  • Diffley JF (2004) Regulation of early events in chromosome replication. Curr Biol 14:R778–R786

    Article  PubMed  CAS  Google Scholar 

  • Domkin V, Thelander L, Chabes A (2002) Yeast DNA damage-inducible Rnr3 has a very low catalytic activity strongly stimulated after the formation of a cross-talking Rnr1/Rnr3 complex. J Biol Chem 277:18574–18578

    Article  PubMed  CAS  Google Scholar 

  • Ehrenberg A, Reichard P (1972) Electron spin resonance of the iron-containing protein B2 from ribonucleotide reductase. J Biol Chem 247:3485–3488

    PubMed  CAS  Google Scholar 

  • Eklund H, Uhlin U, Farnegardh M, Logan DT, Nordlund P (2001) Structure and function of the radical enzyme ribonucleotide reductase. Prog Biophys Mol Biol 77:177–268

    Article  PubMed  CAS  Google Scholar 

  • Elledge SJ, Davis RW (1990) Two genes differentially regulated in the cell cycle and by DNA-damaging agents encode alternative regulatory subunits of ribonucleotide reductase. Genes Dev 4:740–751

    Article  PubMed  CAS  Google Scholar 

  • Erhart E, Hollenberg CP (1983) The presence of a defective LEU2 gene on 2 mu DNA recombinant plasmids of Saccharomyces cerevisiae is responsible for curing and high copy number. J Bacteriol 156:625–635

    PubMed  CAS  Google Scholar 

  • Ghaemmaghami S, Huh WK, Bower K, Howson RW, Belle A, Dephoure N, O’Shea EK, Weissman JS (2003) Global analysis of protein expression in yeast. Nature 425:737–741

    Google Scholar 

  • Gregory TR (2005) The C-value enigma in plants and animals: a review of parallels and an appeal for partnership. Ann Bot (Lond) 95:133–146

    Article  CAS  Google Scholar 

  • Gregory TR, Nicol JA, Tamm H, Kullman B, Kullman K, Leitch IJ, Murray BG, Kapraun DF, Greilhuber J, Bennett MD (2007) Eukaryotic genome size databases. Nucleic Acids Res 35:D332–D338

    Google Scholar 

  • Hartwell LH, Mortimer RK, Culotti J, Culotti M (1973) Genetic Control of the Cell Division Cycle in Yeast: V. Genetic Analysis of cdc Mutants. Genetics 74:267–286

    PubMed  CAS  Google Scholar 

  • Hartwell LH, Culotti J, Pringle JR, Reid BJ (1974) Genetic control of the cell division cycle in yeast. Science 183:46–51

    Article  PubMed  CAS  Google Scholar 

  • Jorgensen P, Tyers M (2004) How cells coordinate growth and division. Curr Biol 14:R1014–R1027

    Article  PubMed  CAS  Google Scholar 

  • Jorgensen P, Nishikawa JL, Breitkreutz BJ, Tyers M (2002) Systematic identification of pathways that couple cell growth and division in yeast. Science 297:395–400

    Article  PubMed  CAS  Google Scholar 

  • Kolberg M, Strand KR, Graff P, Andersson KK (2004) Structure, function, and mechanism of ribonucleotide reductases. Biochim Biophys Acta 1699:1–34

    PubMed  CAS  Google Scholar 

  • Lengronne A, Pasero P, Bensimon A, Schwob E (2001) Monitoring S phase progression globally and locally using BrdU incorporation in TK(+) yeast strains. Nucleic Acids Res 29:1433–1442

    Article  PubMed  CAS  Google Scholar 

  • Leroy C, Mann C, Marsolier MC (2001) Silent repair accounts for cell cycle specificity in the signaling of oxidative DNA lesions. EMBO J 20:2896–2906

    Article  PubMed  CAS  Google Scholar 

  • Lindahl T (1993) Instability and decay of the primary structure of DNA. Nature 362:709–715

    Article  PubMed  CAS  Google Scholar 

  • Longhese MP, Clerici M, Lucchini G (2003) The S-phase checkpoint and its regulation in Saccharomyces cerevisiae. Mutat Res 532:41–58

    PubMed  CAS  Google Scholar 

  • Lynch M (2006) Streamlining and simplification of microbial genome architecture. Annu Rev Microbiol 60:327–349

    Article  PubMed  CAS  Google Scholar 

  • Mao SS, Johnston MI, Bollinger JM, Stubbe J (1989) Mechanism-based inhibition of a mutant Escherichia coli ribonucleotide reductase (cysteine-225—serine) by its substrate CDP. Proc Natl Acad Sci USA 86:1485–1489

    Article  PubMed  CAS  Google Scholar 

  • Mao SS, Holler TP, Yu GX, Bollinger JM, Jr., Booker S, Johnston MI, Stubbe J (1992) A model for the role of multiple cysteine residues involved in ribonucleotide reduction: amazing and still confusing. Biochemistry 31:9733–9743

    Google Scholar 

  • Marsolier MC, Roussel P, Leroy C, Mann C (2000) Involvement of the PP2C-like phosphatase Ptc2p in the DNA checkpoint pathways of Saccharomyces cerevisiae. Genetics 154:1523–1532

    PubMed  CAS  Google Scholar 

  • Mirkin EV, Mirkin SM (2007) Replication fork stalling at natural impediments. Microbiol Mol Biol Rev 71:13–35

    Article  PubMed  CAS  Google Scholar 

  • Mumberg D, Muller R, Funk M (1994) Regulatable promoters of Saccharomyces cerevisiae: comparison of transcriptional activity and their use for heterologous expression. Nucleic Acids Res 22:5767–5768

    Article  PubMed  CAS  Google Scholar 

  • Nasmyth K (1999) Control of S Phase. In: DePamphilis ML (ed) Concepts in Eukaryotic DNA Replication. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 331–386

    Google Scholar 

  • Ni J, Verbavatz JM, Rippe A, Boisde I, Moulin P, Rippe B, Verkman AS, Devuyst O (2006) Aquaporin-1 plays an essential role in water permeability and ultrafiltration during peritoneal dialysis. Kidney Int 69:1518–1525

    Google Scholar 

  • Osborn AJ, Elledge SJ, Zou L (2002) Checking on the fork: the DNA-replication stress-response pathway. Trends Cell Biol 12:509–516

    Article  PubMed  CAS  Google Scholar 

  • Pellicioli A, Lucca C, Liberi G, Marini F, Lopes M, Plevani P, Romano A, Di Fiore PP, Foiani M (1999) Activation of Rad53 kinase in response to DNA damage and its effect in modulating phosphorylation of the lagging strand DNA polymerase. EMBO J 18:6561–6572

    Google Scholar 

  • Sherman F (1991) Getting started with yeast. Methods Enzymol 194:3–21

    Article  PubMed  CAS  Google Scholar 

  • Shimada K, Pasero P, Gasser SM (2002) ORC and the intra-S-phase checkpoint: a threshold regulates Rad53p activation in S phase. Genes Dev 16:3236–3252

    Article  PubMed  CAS  Google Scholar 

  • Sikorski RS, Hieter P (1989) A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27

    PubMed  CAS  Google Scholar 

  • Tercero JA, Longhese MP, Diffley JF (2003) A central role for DNA replication forks in checkpoint activation and response. Mol Cell 11:1323–1336

    Article  PubMed  CAS  Google Scholar 

  • Tourriere H, Pasero P (2007) Maintenance of fork integrity at damaged DNA and natural pause sites. DNA Repair (Amst) 6:900–913

    Article  CAS  Google Scholar 

  • van Gaal EV, Spierenburg G, Hennink WE, Crommelin DJ, Mastrobattista E (2010) Flow cytometry for rapid size determination and sorting of nucleic acid containing nanoparticles in biological fluids. J Control Release 141:328–338

    Article  PubMed  Google Scholar 

  • Vernis L, Piskur J, Diffley JF (2003) Reconstitution of an efficient thymidine salvage pathway in Saccharomyces cerevisiae. Nucleic Acids Res 31:e120

    Article  PubMed  Google Scholar 

  • Viggiani CJ, Aparicio OM (2006) New vectors for simplified construction of BrdU-Incorporating strains of Saccharomyces cerevisiae. Yeast 23:1045–1051

    Article  PubMed  CAS  Google Scholar 

  • Wach A, Brachat A, Alberti-Segui C, Rebischung C, Philippsen P (1997) Heterologous HIS3 marker and GFP reporter modules for PCR-targeting in Saccharomyces cerevisiae. Yeast 13:1065–1075

    Article  PubMed  CAS  Google Scholar 

  • Wagner A (2005) Energy constraints on the evolution of gene expression. Mol Biol Evol 22:1365–1374

    Article  PubMed  CAS  Google Scholar 

  • Yabuki N, Terashima H, Kitada K (2002) Mapping of early firing origins on a replication profile of budding yeast. Genes Cells 7:781–789

    Article  PubMed  CAS  Google Scholar 

  • Young KD (2006) The selective value of bacterial shape. Microbiol Mol Biol Rev 70:660–703

    Article  PubMed  Google Scholar 

  • Zhang J, Schneider C, Ottmers L, Rodriguez R, Day A, Markwardt J, Schneider BL (2002) Genomic scale mutant hunt identifies cell size homeostasis genes in S. cerevisiae. Curr Biol 12:1992–2001

    Google Scholar 

Download references

Acknowledgments

We thank Jean Daraspe for expert technical assistance in electron microscopy, Jean-Yves Thuret for support in video-microscopy, Jean-Louis Sikorav for insightful comments, Sylvie Camier for discussions on RNR at the outset of this work, Etienne Schwob and Christelle de Renty for discussions on BrdU incorporation and detection and Sophie Chéruel for discussions on RNR constructs. This study was partly financed by grants from the Association pour la Recherche sur le Cancer (ARC) and from the Agence Nationale de la Recherche (ANR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Claude Marsolier-Kergoat.

Additional information

Communicated by A. Aguilera.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 212 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, E., Goldar, A., Verbavatz, JM. et al. Giant yeast cells with nonrecyclable ribonucleotide reductase. Mol Genet Genomics 285, 415–425 (2011). https://doi.org/10.1007/s00438-011-0613-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-011-0613-4

Keywords

Navigation