Skip to main content
Log in

Phylogenetic and genetic linkage between novel atypical dual-specificity phosphatases from non-metazoan organisms

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Dual-specificity phosphatases (DSPs) constitute a large protein tyrosine phosphatase (PTP) family, with examples in distant evolutive phyla. PFA-DSPs (Plant and Fungi Atypical DSPs) are a group of atypical DSPs present in plants, fungi, kinetoplastids, and slime molds, the members of which share structural similarity with atypical- and lipid phosphatase DSPs from mammals. The analysis of the PFA-DSPs from the plant Arabidopsis thaliana (AtPFA-DSPs) showed differential tissue mRNA expression, substrate specificity, and catalytic activity for these proteins, suggesting different functional roles among plant PFA-DSPs. Bioinformatic analysis revealed the existence of novel PFA-DSP-related proteins in fungi (Oca1, Oca2, Oca4 and Oca6 in Saccharomyces cerevisiae) and protozoa, which were segregated from plant PFA-DSPs. The closest yeast homolog for these proteins was the PFA-DSP from S. cerevisiae ScPFA-DSP1/Siw14/Oca3. Oca1, Oca2, Siw14/Oca3, Oca4, and Oca6 were involved in the yeast response to caffeine and rapamycin stresses. Siw14/Oca3 was an active phosphatase in vitro, whereas no phosphatase activity could be detected for Oca1. Remarkably, overexpression of Siw14/Oca3 suppressed the caffeine sensitivity of oca1, oca2, oca4, and oca6 deleted strains, indicating a genetic linkage and suggesting a functional relationship for these proteins. Functional studies on mutations targeting putative catalytic residues from the A. thaliana AtPFA-DSP1/At1g05000 protein indicated the absence of canonical amino acids acting as the general acid/base in the phosphor-ester hydrolysis, which suggests a specific mechanism of reaction for PFA-DSPs and related enzymes. Our studies demonstrate the existence of novel phosphatase protein families in fungi and protozoa, with active and inactive enzymes linked in common signaling pathways. This illustrates the catalytic and functional complexity of the expanding family of atypical dual-specificity phosphatases in non-metazoans, including parasite organisms responsible for infectious human diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aceti DJ et al (2008) Structural and functional characterization of a novel phosphatase from the Arabidopsis thaliana gene locus At1g05000. Proteins 73:241–253

    Article  PubMed  CAS  Google Scholar 

  • Addinall SG et al (2008) A genomewide suppressor and enhancer analysis of cdc13–1 reveals varied cellular processes influencing telomere capping in Saccharomyces cerevisiae. Genetics 180:2251–2266

    Article  PubMed  CAS  Google Scholar 

  • Alic N, Higgins VJ, Dawes IW (2001) Identification of a Saccharomyces cerevisiae gene that is required for G1 arrest in response to the lipid oxidation product linoleic acid hydroperoxide*. Mol Biol Cell 12:1801–1810

    PubMed  CAS  Google Scholar 

  • Alonso A, Rojas A, Godzik A, Mustelin T (2004a) The dual-specific protein tyrosine phosphatase family. In: Ariño J, Alexander DR (eds) Topics in current genetics: protein phosphatases. Springer, Berlin, pp 333–358

    Google Scholar 

  • Alonso A, Sasin J, Bottini N, Friedberg I, Friedberg I, Osterman A, Godzik A, Hunter T, Dixon J, Mustelin T et al (2004b) Protein tyrosine phosphatases in the human genome. Cell 117:699–711

    Article  PubMed  CAS  Google Scholar 

  • Andreeva AV, Kutuzov MA (2008) Protozoan protein tyrosine phosphatases. Int J Parasitol 38:1279–1295

    Article  PubMed  CAS  Google Scholar 

  • Attwood TK, Findlay JB (1993) Design of a discriminating fingerprint for G-protein-coupled receptors. Protein Eng 6:167–176

    Article  PubMed  CAS  Google Scholar 

  • Attwood TK, Findlay JB (1994) Fingerprinting G-protein-coupled receptors. Protein Eng 7:195–203

    Article  PubMed  CAS  Google Scholar 

  • Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA (2001) Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci USA 98:10037–10041

    Article  PubMed  CAS  Google Scholar 

  • Bartels S et al (2009) MAP kinase phosphatase1 and protein tyrosine phosphatase1 are repressors of salicylic acid synthesis and SNC1-mediated responses in Arabidopsis. Plant Cell 21:2884–2897

    Article  PubMed  CAS  Google Scholar 

  • Begley MJ, Dixon JE (2005) The structure and regulation of myotubularin phosphatases. Curr Opin Struct Biol 15:614–620

    Article  PubMed  CAS  Google Scholar 

  • Beresford N, Patel S, Armstrong J, Szoor B, Fordham-Skelton AP, Tabernero L (2007) MptpB, a virulence factor from Mycobacterium tuberculosis, exhibits triple-specificity phosphatase activity. Biochem J 406:13–18

    Article  PubMed  CAS  Google Scholar 

  • Beresford NJ, Saville C, Bennett HJ, Roberts IS, Tabernero L (2010) A new family of phosphoinositide phosphatases in microorganisms: identification and biochemical analysis. BMC Genomics 11:457

    Article  PubMed  Google Scholar 

  • Brenchley R et al (2007) The TriTryp phosphatome: analysis of the protein phosphatase catalytic domains. BMC Genomics 8:434

    Article  PubMed  Google Scholar 

  • Care A et al (2004) A synthetic lethal screen identifies a role for the cortical actin patch/endocytosis complex in the response to nutrient deprivation in Saccharomyces cerevisiae. Genetics 166:707–719

    Article  PubMed  CAS  Google Scholar 

  • Chen W, Wilborn M, Rudolph J (2000) Dual-specific Cdc25B phosphatase: in search of the catalytic acid. Biochemistry 39:10781–10789

    Article  PubMed  CAS  Google Scholar 

  • Collins SR et al (2007) Toward a comprehensive atlas of the physical interactome of Saccharomyces cerevisiae. Mol Cell Proteomics 6:439–450

    PubMed  CAS  Google Scholar 

  • Denu JM, Zhou G, Guo Y, Dixon JE (1995) The catalytic role of aspartic acid-92 in a human dual-specific protein-tyrosine-phosphatase. Biochemistry 34:3396–3403

    Article  PubMed  CAS  Google Scholar 

  • Doi K et al (1994) MSG5, a novel protein phosphatase promotes adaptation to pheromone response in S. cerevisiae. EMBO J 13:61–70

    PubMed  CAS  Google Scholar 

  • Dudley AM, Janse DM, Tanay A, Shamir R, Church GM (2005) A global view of pleiotropy and phenotypically derived gene function in yeast. Mol Syst Biol 1:2005 0001

    Google Scholar 

  • Felsentein J (1989) PHYLIP—phylogeny inference package (Version 3.2). Cladistics 5:164–166

    Google Scholar 

  • Flandez M, Cosano IC, Nombela C, Martin H, Molina M (2004) Reciprocal regulation between Slt2 MAPK and isoforms of Msg5 dual-specificity protein phosphatase modulates the yeast cell integrity pathway. J Biol Chem 279:11027–11034

    Article  PubMed  CAS  Google Scholar 

  • Fox GC et al (2007) Redox-mediated substrate recognition by Sdp1 defines a new group of tyrosine phosphatases. Nature 447:487–492

    Article  PubMed  CAS  Google Scholar 

  • Gingras MC et al (2009) HD-PTP is a catalytically inactive tyrosine phosphatase due to a conserved divergence in its phosphatase domain. PLoS One 4:e5105

    Article  PubMed  Google Scholar 

  • Gonzalez A, Ruiz A, Casamayor A, Arino J (2009) Normal function of the yeast TOR pathway requires the type 2C protein phosphatase Ptc1. Mol Cell Biol 29:2876–2888

    Article  PubMed  CAS  Google Scholar 

  • Gross S et al (2002) Multimerization of the protein-tyrosine phosphatase (PTP)-like insulin-dependent diabetes mellitus autoantigens IA-2 and IA-2beta with receptor PTPs (RPTPs) inhibition of RPTPalpha enzymatic activity. J Biol Chem 277:48139–48145

    Article  PubMed  CAS  Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  • Hahn JS, Thiele DJ (2002) Regulation of the Saccharomyces cerevisiae Slt2 kinase pathway by the stress-inducible Sdp1 dual specificity phosphatase. J Biol Chem 277:21278–21284

    Article  PubMed  CAS  Google Scholar 

  • Hampsey M (1997) A review of phenotypes in Saccharomyces cerevisiae. Yeast 13:1099–1133

    Article  PubMed  CAS  Google Scholar 

  • Hinton SD, Myers MP, Roggero VR, Allison LA, Tonks NK (2010) The pseudophosphatase MK-STYX interacts with G3BP and decreases stress granule formation. Biochem J 427:349–357

    Article  PubMed  CAS  Google Scholar 

  • Hirasaki M, Kaneko Y, Harashima S (2008) Protein phosphatase Siw14 controls intracellular localization of Gln3 in cooperation with Npr1 kinase in Saccharomyces cerevisiae. Gene 409:34–43

    Article  PubMed  CAS  Google Scholar 

  • Hirasaki M et al (2010) Deciphering cellular functions of protein phosphatases by comparison of gene expression profiles in Saccharomyces cerevisiae. J Biosci Bioeng 109:433–441

    Article  PubMed  CAS  Google Scholar 

  • Ito T, Chiba T, Ozawa R, Yoshida M, Hattori M, Sakaki Y (2001) A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci USA 98:4569–4574

    Article  PubMed  CAS  Google Scholar 

  • Kennelly PJ (2001) Protein phosphatases—a phylogenetic perspective. Chem Rev 101:2291–2312

    Article  PubMed  CAS  Google Scholar 

  • Kuranda K, Leberre V, Sokol S, Palamarczyk G, Francois J (2006) Investigating the caffeine effects in the yeast Saccharomyces cerevisiae brings new insights into the connection between TOR, PKC and Ras/cAMP signalling pathways. Mol Microbiol 61:1147–1166

    Article  PubMed  CAS  Google Scholar 

  • Lambert C, Leonard N, De Bolle X, Depiereux E (2002) ESyPred3D: prediction of proteins 3D structures. Bioinformatics 18:1250–1256

    Article  PubMed  CAS  Google Scholar 

  • Lee JO et al (1999) Crystal structure of the PTEN tumor suppressor: implications for its phosphoinositide phosphatase activity and membrane association. Cell 99:323–334

    Article  PubMed  CAS  Google Scholar 

  • Luan S (2003) Protein phosphatases in plants. Annu Rev Plant Biol 54:63–92

    Article  PubMed  CAS  Google Scholar 

  • Maehama T, Taylor GS, Dixon JE (2001) PTEN and myotubularin: novel phosphoinositide phosphatases. Annu Rev Biochem 70:247–279

    Article  PubMed  CAS  Google Scholar 

  • Martin H, Flandez M, Nombela C, Molina M (2005) Protein phosphatases in MAPK signalling: we keep learning from yeast. Mol Microbiol 58:6–16

    Article  PubMed  CAS  Google Scholar 

  • Moorhead GB, De Wever V, Templeton G, Kerk D (2009) Evolution of protein phosphatases in plants and animals. Biochem J 417:401–409

    Article  PubMed  CAS  Google Scholar 

  • Nordle AK, Rios P, Gaulton A, Pulido R, Attwood TK, Tabernero L (2007) Functional assignment of MAPK phosphatase domains. Proteins 69:19–31

    Article  PubMed  CAS  Google Scholar 

  • Owens DM, Keyse SM (2007) Differential regulation of MAP kinase signalling by dual-specificity protein phosphatases. Oncogene 26:3203–3213

    Article  PubMed  CAS  Google Scholar 

  • Page RD (1996) TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358

    PubMed  CAS  Google Scholar 

  • Parsons AB et al (2004) Integration of chemical-genetic and genetic interaction data links bioactive compounds to cellular target pathways. Nat Biotechnol 22:62–69

    Article  PubMed  CAS  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45

    Article  PubMed  CAS  Google Scholar 

  • Pincus D, Letunic I, Bork P, Lim WA (2008) Evolution of the phospho-tyrosine signaling machinery in premetazoan lineages. Proc Natl Acad Sci USA 105:9680–9684

    Article  PubMed  CAS  Google Scholar 

  • Reinke A, Chen JC, Aronova S, Powers T (2006) Caffeine targets TOR complex I and provides evidence for a regulatory link between the FRB and kinase domains of Tor1p. J Biol Chem 281:31616–31626

    Article  PubMed  CAS  Google Scholar 

  • Rieger KJ, El-Alama M, Stein G, Bradshaw C, Slonimski PP, Maundrell K (1999) Chemotyping of yeast mutants using robotics. Yeast 15:973–986

    Article  PubMed  CAS  Google Scholar 

  • Romá-Mateo C, Ríos P, Tabernero L, Attwood TK, Pulido R (2007) A novel phosphatase family, structurally related to dual-specificity phosphatases, that displays unique amino acid sequence and substrate specificity. J Mol Biol 374:899–909

    Article  PubMed  Google Scholar 

  • Sakumoto N, Matsuoka I, Mukai Y, Ogawa N, Kaneko Y, Harashima S (2002) A series of double disruptants for protein phosphatase genes in Saccharomyces cerevisiae and their phenotypic analysis. Yeast 19:587–599

    Article  PubMed  CAS  Google Scholar 

  • Torii S (2009) Expression and function of IA-2 family proteins, unique neuroendocrine-specific protein-tyrosine phosphatases. Endocr J 56:639–648

    Article  PubMed  CAS  Google Scholar 

  • Ulm R, Revenkova E, di Sansebastiano GP, Bechtold N, Paszkowski J (2001) Mitogen-activated protein kinase phosphatase is required for genotoxic stress relief in Arabidopsis. Genes Dev 15:699–709

    Article  PubMed  CAS  Google Scholar 

  • Ulm R et al (2002) Distinct regulation of salinity and genotoxic stress responses by Arabidopsis MAP kinase phosphatase 1. EMBO J 21:6483–6493

    Article  PubMed  CAS  Google Scholar 

  • Wilkes JM, Doerig C (2008) The protein-phosphatome of the human malaria parasite Plasmodium falciparum. BMC Genomics 9:412

    Article  PubMed  Google Scholar 

  • Winter G, Hazan R, Bakalinsky AT, Abeliovich H (2008) Caffeine induces macroautophagy and confers a cytocidal effect on food spoilage yeast in combination with benzoic acid. Autophagy 4:28–36

    PubMed  CAS  Google Scholar 

  • Wishart MJ, Dixon JE (1998) Gathering STYX: phosphatase-like form predicts functions for unique protein-interaction domains. Trends Biochem Sci 23:301–306

    Article  PubMed  CAS  Google Scholar 

  • Xie MW et al (2005) Insights into TOR function and rapamycin response: chemical genomic profiling by using a high-density cell array method. Proc Natl Acad Sci USA 102:7215–7220

    Article  PubMed  CAS  Google Scholar 

  • Yuvaniyama J, Denu JM, Dixon JE, Saper MA (1996) Crystal structure of the dual specificity protein phosphatase VHR. Science 272:1328–1331

    Article  PubMed  CAS  Google Scholar 

  • Zhou H, Luo Y, Huang S (2010) Updates of mTOR inhibitors. Anticancer Agents Med Chem 10:571–581

    PubMed  CAS  Google Scholar 

  • Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W (2004) GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol 136:2621–2632

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants SAF2006-08319 from Ministerio de Educación y Ciencia, SAF2009-10226 from Ministerio de Ciencia e Innovación (Spain and Fondo Europeo de Desarrollo Regional, FEDER; Plan de estímulo a la economía y el empleo, Plan E), AP-117/08, ACOMP2009/363 and ACOMP2010/222 from Generalitat Valenciana (Spain) (to R.P.), G0701233 from Medical Research Council (U.K.) (to L.T.), BIO2007-67299 from Ministerio de Ciencia e Innovación (Spain) (to M.M.), and by European Union Research Training Network MRTN-CT-2006-035830. C. Romá-Mateo and A. Sacristán-Reviriego have been recipients of predoctoral fellowships from Ministerio de Educación y Ciencia (Spain). We thank Peter Sudbery and José Luis Revuelta for providing cDNAs, the Arabidopsis Biological Resource Center (USA; donors: SSP Consortium, Sakis Theologis, Joe Ecker) for providing plasmids, and Isabel Roglá and Charis Saville for expert technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Pulido.

Additional information

Communicated by M. Collart.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 39 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romá-Mateo, C., Sacristán-Reviriego, A., Beresford, N.J. et al. Phylogenetic and genetic linkage between novel atypical dual-specificity phosphatases from non-metazoan organisms. Mol Genet Genomics 285, 341–354 (2011). https://doi.org/10.1007/s00438-011-0611-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-011-0611-6

Keywords

Navigation