Skip to main content
Log in

Recent transposition activity of Xenopus T2 family miniature inverted-repeat transposable elements

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

To investigate the recent transposition activity of T2 family miniature inverted-repeat transposable elements (MITEs) in Xenopus tropicalis (Western clawed frog), we analyzed the intraspecific polymorphisms associated with MITE insertion in X. tropicalis for three subfamilies of the T2 family (T2-A1, T2-C, and T2-E). A high frequency of MITE-insertion polymorphisms was observed at the T2-A1 (50%) and T2-C insertion loci (60%), but none were noted at the T2-E insertion locus (0%). Analyses of the collected data indicated that members of the T2-A1 and T2-C subfamilies may be currently active in the host species. Identification of these active transpositions will help us in understanding the mechanisms underlying the long-term survival (over several tens of millions of years) of the T2-A1 and T2-C subfamilies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bergero R, Forrest A, Charlesworth D (2008) Active miniature transposons from a plant genome and its non-recombining Y chromosome. Genetics 178:1085–1092

    Article  CAS  PubMed  Google Scholar 

  • Brookfield J (2005) The ecology of the genome—mobile DNA elements and their hosts. Nat Rev Genet 6:128–136

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Zhou F, Li G, Xu Y (2008) A recently active MITE, Chunjie, inserted into an operon without disturbing the operon structure in Geobacter uraniireducens Rf4. Genetics 179:2291–2297

    Article  CAS  PubMed  Google Scholar 

  • Evans BJ, Kelley DB, Tinsley RC, Melnick DJ, Cannatella DC (2004) A mitochondrial DNA phylogeny of African clawed frogs: phylogeography and implications for polyploid evolution. Mol Phylogenet Evol 33:197–213

    Article  CAS  PubMed  Google Scholar 

  • Feschotte C, Zhang X, Wessler RW (2002) Miniature inverted-repeat transposable elements and their relationships to established DNA transposons. In: Craig NL, Craigie R, Gellert M, Lambowitz AM (eds) Mobile DNA II. ASM Press, Washington, DC, pp 1093–1110

    Google Scholar 

  • Hellsten U, Harland MH, Gilchrist MJ et al (2010) The genome of the western clawed frog Xenopus tropicalis. Science 328:633–636

    Article  CAS  PubMed  Google Scholar 

  • Hikosaka A, Kawahara A (2004) Lineage-specific tandem repeats riding on a transposable element of MITE in Xenopus evolution: a new mechanism for creating simple sequence repeats. J Mol Evol 59:738–746

    Article  CAS  PubMed  Google Scholar 

  • Hikosaka A, Kawahara A (2010) A systematic search and classification of T2 family miniature inverted-repeat transposable elements (MITEs) in Xenopus tropicalis suggests the existence of recently active MITE subfamilies. Mol Genet Genomics 283:49–62

    Article  CAS  PubMed  Google Scholar 

  • Hikosaka A, Yokouchi E, Kawahara A (2000) Extensive amplification and transposition of a novel repetitive element, Xstir, together with its terminal inverted repeat in the evolution of Xenopus. J Mol Evol 51:554–564

    CAS  PubMed  Google Scholar 

  • Hikosaka A, Kobayashi T, Saito Y, Kawahara A (2007) Evolution of the Xenopus piggyBac transposon family TxpB: domesticated and untamed strategies of transposon subfamilies. Mol Biol Evol 24:2648–2656

    Article  CAS  PubMed  Google Scholar 

  • Izsvák Z, Ivics Z, Shimoda N, Mohn D, Okamoto H, Hackett PB (1999) Short inverted-repeat transposable elements in teleost fish and implications for a mechanism of their amplification. J Mol Evol 48:13–21

    Article  PubMed  Google Scholar 

  • Jiang N, Bao Z, Zhang X, Hirochika H, Eddy SR, McCouch SR, Wessler SR (2003) An active DNA transposon family in rice. Nature 421:163–167

    Article  CAS  PubMed  Google Scholar 

  • Jurka J, Kapitonov VV, Pavlicek A, Klonowski P, Kohany O, Walichiewicz J (2005) Repbase Update, a database of eukaryotic repetitive elements. Cytogenet Genome Res 110:462–467

    Article  CAS  PubMed  Google Scholar 

  • Kapitonov VV, Jurka J (2007) Kolobok, a novel superfamily of eukaryotic DNA transposons. Repbase Rep 7:111

    Google Scholar 

  • Kashiwagi K, Kashiwagi A, Kurabayashi A, Hanada H, Nakajima K, Okada M, Takase M, Yaoita Y (2010) Xenopus tropicalis: an ideal experimental animal in amphibia. Exp Anim 59:395–405

    Article  CAS  PubMed  Google Scholar 

  • Kikuchi K, Terauchi K, Wada M, Hirano H (2003) The plant MITE mPing is mobilized in anther culture. Nature 421:167–170

    Article  CAS  PubMed  Google Scholar 

  • Knöchel W, Korge E, Basner A, Meyerhof W (1986) Globin evolution in the genus Xenopus: comparative analysis of cDNAs coding for adult globin polypeptides of Xenopus borealis and Xenopus tropicalis. J Mol Evol 23:211–223

    Article  PubMed  Google Scholar 

  • Koga A, Suzuki M, Inagaki H, Bessho Y, Hori H (1996) Transposable element in fish. Nature 383:30

    Article  CAS  PubMed  Google Scholar 

  • Koga A, Shimada A, Kuroki T, Hori H, Kusumi J, Kyono-Hamaguchi Y, Hamaguchi S (2007) The Tol1 transposable element of the medaka fish moves in human and mouse cells. J Hum Genet 52:628–635

    Article  CAS  PubMed  Google Scholar 

  • Nakazaki T, Okumoto Y, Horibata A, Yamahira S, Teraishi M, Nishida H, Inoue H, Tanisaka T (2003) Mobilization of transposon in rice genome. Nature 421:170–172

    Article  CAS  PubMed  Google Scholar 

  • Rice P, Longden I, Bleasby A (2000) EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet 16:276–277

    Article  CAS  PubMed  Google Scholar 

  • Ünsal K, Morgan GT (1995) A novel group of families of short interspersed repetitive elements (SINEs) in Xenopus: evidence of a specific target site for DNA-mediated transposition of inverted-repeat SINEs. J Mol Biol 248:812–823

    Article  PubMed  Google Scholar 

  • Zhou F, Tran T, Xu Y (2008) Nezha, a novel active miniature inverted-repeat transposable element in cyanobacteria. Biochem Biophys Res Commun 365:790–794

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We wish to express our gratitude to the National Bioresource Project, particularly to Dr. Yaoita and Dr. Kashiwagi (Center for Amphibian Biology, Hiroshima University) and Dr. Asashima and Dr. Takahashi (Graduate School of Arts and Sciences, The University of Tokyo) for providing X. tropicalis strains. We thank the United States Department of Energy Joint Genome Institute (DOE JGI) for providing X. tropicalis genome data. This work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology (Grant number 19651083 and 22570212).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Hikosaka.

Additional information

Communicated by S. Hohmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hikosaka, A., Nishimura, K., Hikosaka-Katayama, T. et al. Recent transposition activity of Xenopus T2 family miniature inverted-repeat transposable elements. Mol Genet Genomics 285, 219–224 (2011). https://doi.org/10.1007/s00438-010-0599-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-010-0599-3

Keywords

Navigation