Skip to main content
Log in

Evolution of nematode-resistant Mi-1 gene homologs in three species of Solanum

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Plants have evolved several defense mechanisms, including resistance genes. Resistance to the root-knot nematode Meloidogyne incognita has been found in wild plant species. The molecular basis for this resistance has been best studied in the wild tomato Solanum peruvianum and it is based on a single dominant gene, Mi-1.2, which is found in a cluster of seven genes. This nematode attacks fiercely several crops, including potatoes. The genomic arrangement, number of copies, function and evolution of Mi-1 homologs in potatoes remain unknown. In this study, we analyzed partial genome sequences of the cultivated potato species S. tuberosum and S. phureja and identified 59 Mi-1 homologs. Mi-1 homologs in S. tuberosum seem to be arranged in clusters and located on chromosome 6 of the potato genome. Previous studies have suggested that Mi-1 genes in tomato evolved rapidly by frequent sequence exchanges among gene copies within the same cluster, losing orthologous relationships. In contrast, Mi-1 homologs from cultivated potato species (S. tuberosum and S. phureja) seem to have evolved by a birth-and-death process, in which genes evolve mostly by mutations and interallelic recombinations in addition to sequence exchanges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Albrecht M, Takken F (2006) Update on the domain architectures of NLRs and R proteins. Biochem Biophys Res Commun 339:459–462

    Article  CAS  PubMed  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    CAS  PubMed  Google Scholar 

  • Berthou F et al (2003) Enhancing the resistance of the potato to Southern root-knot nematodes by using Solanum sparsipilum germplasm. Euphytica 132:57–65

    Article  Google Scholar 

  • Bruen T, Philippe H, Bryant D (2006) A simple and robust statistical test for detecting the presence of recombination. Genetics 172:2665–2681

    Article  CAS  PubMed  Google Scholar 

  • Bryan G, Hein I (2008) Genomic resources and tools for gene function analysis in potato. Int J Plant Genomics 2008:1–9

  • Chen R, Li H, Zhang L, Zhang J, Xiao J, Ye Z (2007) CaMi, a root-knot nematode resistance gene from hot pepper (Capsicum annuum L.) confers nematode resistance in tomato. Plant Cell Rep 26:895–905

    Article  CAS  PubMed  Google Scholar 

  • Cipar M, Peloquin S, Hougas R (1964) Variability in the expression of self-incompatibility in tuber-bearing diploid Solanum species. Am Potato J 41:155–162

    Article  Google Scholar 

  • Cooley M, Pathirana S, Wu H, Kachroo P, Klessig D (2000) Members of the Arabidopsis HRT/RPP8 family of resistance genes confer resistance to both viral and oomycete pathogens. Plant Cell 12:663–676

    Article  CAS  PubMed  Google Scholar 

  • Dodds P, Lawrence G, Ellis J (2001) Contrasting modes of evolution acting on the complex N locus for rust resistance in flax. Plant J 27:439–453

    Article  CAS  PubMed  Google Scholar 

  • Dropkin V (1969) Cellular responses of plants to nematode infections. Annu Rev Phytopathol 7

  • Frankel R, Galun E (1977) Pollination mechanisms, reproduction and plant breeding. Springer, Berlin

    Google Scholar 

  • Friedman A, Baker B (2007) The evolution of resistance genes in multi-protein plant resistance systems. Curr Opin Genet Dev 17:493–499

    Article  CAS  PubMed  Google Scholar 

  • Gebhardt C, Valkonen J (2001) Organization of genes controlling disease resistance in the potato genome. Annu Rev Phytopathol 39:79–102

    Article  CAS  PubMed  Google Scholar 

  • Gilbert J, McGuire D (1956) Inheritance of resistance to severe root-knot, Meloidogyne incognita, in commercial type tomatoes. Proc Am Soc Hortic Sci 68:437–442

    Google Scholar 

  • Grube R, Radwanski E, Jahn M (2000) Comparative genetics of disease resistance within the Solanaceae. Genetics 155:873–887

    CAS  PubMed  Google Scholar 

  • Huang S et al (2005) Comparative genomics enabled the isolation of the R3a late blight resistance gene in potato. Plant J 42:251–261

    Article  CAS  PubMed  Google Scholar 

  • Huson D, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23:254–267

    Article  CAS  PubMed  Google Scholar 

  • Jablonska B et al (2007) The Mi-9 gene from Solanum arcanum conferring heat-stable resistance to root-knot nematodes is a homolog of Mi-1. Plant Physiol 143:1044–1054

    Article  CAS  PubMed  Google Scholar 

  • Kaloshian I et al (1998) Genetic and physical localization of the root-knot nematode resistance locus Mi in tomato. Mol Gen Genet 257:376–385

    Article  CAS  PubMed  Google Scholar 

  • Keeling PJ, Palmer JD (2008) Horizontal gene transfer in eukaryotic evolution. Nat Rev 9:1–14

    Google Scholar 

  • Kuang H, Woo S, Meyers B, Nevo E, Michelmore R (2004) Multiple genetic processes results in heterogeneous rates of evolution within the major cluster disease resistance genes in lettuce. Plant Cell 16:2870–2894

    Article  CAS  PubMed  Google Scholar 

  • Kuang H et al (2005) The R1 resistance gene cluster contains three groups of independently evolving, type I R1 homologues and shows substantial structural variation among haplotypes of Solanum demissum. Plant J 44:37–51

    Article  CAS  PubMed  Google Scholar 

  • Maddison W, Maddison P (2000) MacClade version 4: analysis of phylogeny and character evolution. Sinauer Associates, Sunderland

    Google Scholar 

  • Martin G, Bogdanove A, Sessa G (2003) Understanding the functions of plant disease resistance proteins. Annu Rev Plant Biol 54:23–61

    Article  CAS  PubMed  Google Scholar 

  • Michelmore R, Meyers B (1998) Clusters of resistance genes in plants evolve by divergent selection and a birth-and-death process. Genome Res 8:1113–1130

    CAS  PubMed  Google Scholar 

  • Milligan S, Bodeau J, Yaghoobi J, Kaloshian I, Zabel P (1998) The root knot nematode resistance gene Mi from tomato is a member of the leucine zipper, nucleotide binding, leucine-rich repeat family of plant genes. Plant Cell 10:1307–1320

    Article  CAS  PubMed  Google Scholar 

  • Mueller L, Lankhorst R, Tanksley S et al (2009) A snapshot of the emerging tomato genome sequence. The Plant Genome 2:78–92

    Google Scholar 

  • Nei M, Gojobori T (1986) Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 3:418–426

    CAS  PubMed  Google Scholar 

  • Nei M, Gu X, Sitnikova T (1997) Evolution by the birth-and-death process in multigene families of the vertebrate immune system. Proc Natl Acad Sci USA 94:7799–7806

    Article  CAS  PubMed  Google Scholar 

  • Nirula K, Khushu C, Raj B (1969) Resistance in tuber-bearing Solanum species to root knot nematode, Meloidogyne incognita. Am Potato J 46:251–253

    Article  Google Scholar 

  • Niu C, Hinchliffe D, Cantrell R, Wang CY, Roberts P, Zhang J (2007) Identification of molecular markers associated with root-knot nematode resistance in upland cotton. Crop Sci 47:951–960

    Article  CAS  Google Scholar 

  • Nombela G, Williamson V, Muniz M (2003) The root-knot nematode resistance gene Mi-1.2 of tomato is responsible for resistance against the whitefly Bemisia tabaci. Mol Plant Microbe Interact 16:645–649

    Article  CAS  PubMed  Google Scholar 

  • Parniske M et al (1997) Novel disease resistance specificities result from sequence exchange between tandemly repeated genes at the Cf-4/9 locus of tomato. Cell 91:821–832

    Article  CAS  PubMed  Google Scholar 

  • Philippe H, Snell E, Bapteste E, Lopez P, Holland P, Casane D (2004) Phylogenomics of eukaryotes: impact of missing data on large alignments. Mol Biol Evol 21:1740–1752

    Article  CAS  PubMed  Google Scholar 

  • Posada D, Crandall K (1998) ModelTest: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  CAS  PubMed  Google Scholar 

  • Quevillon E et al (2005) InterProScan: protein domains identifier. Nucleic Acids Res 33:116–120

    Article  Google Scholar 

  • Rairdan G, Moffett P (2006) Distinct domains in the ARC region of the potato resistance protein Rx mediate LRR binding and inhibition of activation. Plant Cell 18:2082–2093

    Article  CAS  PubMed  Google Scholar 

  • Ramanna M (1983) First division restitution gametes through fertile desynaptic mutants of potato. Euphytica 32:337–350

    Article  Google Scholar 

  • Rossi M, Goggin F, Milligan S, Kaloshian I, Ullman D, Williamson V (2003) The nematode resistance gene Mi of tomato confers resistance against the potato aphid. Proc Natl Acad Sci USA 95:9750–9754

    Google Scholar 

  • Sanchez-Puerta MV, Cho Y, Mower JP, Alverson AJ, Palmer JD (2008) Frequent, phylogenetically local horizontal transfer of the cox1 group I intron in flowering plant mitochondria. Mol Biol Evol 25:1762–1777

    Article  CAS  PubMed  Google Scholar 

  • Sasser J, Carter C (1985) An advance treatise on Meloidogyne. NC State Univ Graph, Raleigh

    Google Scholar 

  • Sawyer S (1989) Statistical tests for detecting gene conversion. Mol Biol Evol 6:526–538

    CAS  PubMed  Google Scholar 

  • Seah S, Yaghoobi J, Rossi M, Gleason C, Williamson V (2004) The nematode-resistance gene, Mi-1, is associated with an inverted chromosomal segment in susceptible compared to resistant tomato. Theor Appl Genet 108:1635–1642

    Article  CAS  PubMed  Google Scholar 

  • Seah S, Telleen A, Williamson V (2007) Introgressed and endogenous Mi-1 gene clusters in tomato differ by complex rearrangements in flanking sequences and show sequence exchange and diversifying selection among homologues. Theor Appl Genet 114:1289–1302

    Article  CAS  PubMed  Google Scholar 

  • Shimodaira H (2002) An approximately unbiased test of phylogenetic tree selection. Syst Biol 51:492–508

    Google Scholar 

  • Swofford D, Olsen G, Waddell P, Hillis D (2002) PAUP*. Phylogenetic analysis using parsimony (*and other methods). Version 4. Sinauer Associates, Sunderland

    Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Tanksley S et al (1992) High density molecular linkage maps of the tomato and potato genomes. Genetics 132:1141–1160

    CAS  PubMed  Google Scholar 

  • van der Linden G, Wouters D, Mihalka V, Kochieva E, Smulders M, Vosman B (2004) Efficient targeting of plant disease resistance loci using NBS profiling. Theor Appl Genet 109:384–393

    Article  PubMed  Google Scholar 

  • van der Rouppe Voort J et al (1997) Use of allele specificity of comigrating AFLP markers to align genetic maps from different potato genotypes. Mol Gen Genet 255:438–447

    Article  Google Scholar 

  • van der Vossen E et al (2005) The Rpi-blb2 gene from Solanum bulbocastanum is an Mi-1 gene homolog conferring broad-spectrum late blight resistance to potato. Plant J 44:208–222

    Article  PubMed  Google Scholar 

  • van Ooijen G, van den Burg H, Cornelissen B, Takken F (2007) Structure and function of resistance proteins in Solanaceous plants. Annu Rev Phytopathol 45:43–72

    Article  PubMed  Google Scholar 

  • van Ooijen G, Mayr G, Kasiem M, Albrecht M, Cornelissen B, Takken F (2008) Structure–function analysis of the NB–ARC domain of plant disease resistance proteins. J Exp Botany 59:1383–1397

    Article  Google Scholar 

  • Visser RGF et al (2009) Sequencing the potato genome: outline and first results to come from the elucidation of the sequence of the world’s third most important food crop. Am J Potato Res 86:417–429

    Article  CAS  Google Scholar 

  • Vos P et al (1998) The tomato Mi-1 gene confers resistance to both root-knot nematodes and potato aphids. Nat Biotechnol 16:1365–1369

    Article  CAS  PubMed  Google Scholar 

  • Wiens J (2006) Missing data and the design of phylogenetic analyses. J Biomed Inform 39:34–42

    Article  CAS  PubMed  Google Scholar 

  • Williamson V, Kumar A (2006) Nematode resistance in plants: the battle underground. Trends Genet 22:396–403

    Article  CAS  PubMed  Google Scholar 

  • Zhu W et al (2008) Analysis of 90 Mb of the potato genome reveals conservation of gene structures and order with tomato but divergence in repetitive sequence composition. BMC Genomics 9:286

    Article  PubMed  Google Scholar 

  • Zwickl DJ (2006) Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. University of Texas, Austin

Download references

Acknowledgments

We would like to thank the anonymous reviewers for their highly valuable suggestions. This study was supported by grants from ANPCyT (PICT-2008-277) and Universidad Nacional de Cuyo (Sectyp 06/M022) to MVSP and RWM, who are researchers from CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Virginia Sanchez-Puerta.

Additional information

Communicated by C. Gebhardt.

Electronic Supplementary Material

438_2010_596_MOESM1_ESM.eps

Figure S1. Phylogenetic tree of Mi-1 homologs from S. lycopersicum (in red) and S. tuberosum (in green), based on 106 taxa and 4079 nt. Yellow rectangles indicate duplicate sequences. (EPS 348 kb)

Figure S2. Alignment of Mi-1 homologs from S. lycopersicum, S. tuberosum and S. phureja. (TXT 355 kb)

438_2010_596_MOESM3_ESM.eps

Figure S3. A: Phylogenetic analyses of different regions of StMi1h genes from S. tuberosum. On the left: N-terminal region (2088 nt long); in the middle: NBS region (873 nt long), and on the right: LRR (1068 nt long). Best trees based on nucleotides under maximum likelihood (ML) using the program Garli. Trees are plotted on a common scale. B: AU test p values comparing the trees from each gene region. (EPS 507 kb)

438_2010_596_MOESM4_ESM.eps

Figure S4. Phylogenetic analyses of different regions of Mi-1 genes from S. lycopersicum. On the left: N-terminal region (2088 nt long); in the middle: NBS region (873 nt long); and on the right: LRR (1068 nt long). Best trees based on nucleotides under maximum likelihood (ML) using the program Garli. Trees are plotted on a common scale. B: AU test p values comparing the trees from each gene region. (EPS 487 kb)

Table S1. List of Mi-1 genes from Solanaceae included in this study. (XLS 36.5 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sanchez-Puerta, M.V., Masuelli, R.W. Evolution of nematode-resistant Mi-1 gene homologs in three species of Solanum . Mol Genet Genomics 285, 207–218 (2011). https://doi.org/10.1007/s00438-010-0596-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-010-0596-6

Keywords

Navigation