Skip to main content
Log in

Two flagellar stators and their roles in motility and virulence in Pseudomonas syringae pv. tabaci 6605

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

The motor proteins around the flagellar basal body consist of two cytoplasmic membrane proteins, MotA and MotB, and function as a complex that acts as the stator to generate the torque that drives rotation. Genome analysis of several Pseudomonas syringae pathovars revealed that there are two sets of genes encoding motor proteins: motAB and motCD. Deduced amino acid sequences for MotA/B and MotC/D showed homologies to the H+-driven stator from Escherichia coli and Na+-driven stator from Vibrio alginolyticus, respectively. However, the swimming motility of P. syringae pv. tabaci (Pta) 6605 was inhibited by the protonophore carbonyl cyanide m-chlorophenylhydrazone but not by the sodium stator-specific inhibitor phenamil. To identify a gene encoding the stator protein required for motility, ∆motAB, ∆motCD, and ∆motABCD mutants were generated. The ∆motCD mutant had remarkably reduced and the ∆motABCD mutant completely abolished swimming motilities, whereas the ∆motAB mutant retained some degree of these abilities. The ∆motCD and ∆motABCD mutants did not produce N-acyl-homoserine lactones (AHLs), quorum-sensing molecules in this pathogen, and remarkably reduced the ability to cause disease in host tobacco leaves, as we previously observed in the ∆fliC mutant strain. These results strongly indicate that both stator pairs in Pta 6605 are proton-dependent and that MotCD is important for not only flagellar motility but also for production of AHLs and the ability to cause disease in host plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alexeyev MF, Shokolenko IN, Croughan TP (1995) New mini-Tn5 derivatives for insertion mutagenesis and genetic engineering in Gram-negative bacteria. Can J Microbiol 41:1053–1055

    Article  CAS  PubMed  Google Scholar 

  • Asai Y, Kojima S, Kato H, Nishioka N, Kawagishi I, Homma M (1997) Putative channel components for the fast-rotating sodium-driven flagellar motor of a marine bacterium. J Bacteriol 179:5104–5110

    CAS  PubMed  Google Scholar 

  • Asai Y, Kawagishi I, Sockett RE, Homma M (1999) Hybrid motor with H+- and Na+-driven components can rotate Vibrio polar flagella by using sodium ions. J Bacteriol 181:6332–6338

    CAS  PubMed  Google Scholar 

  • Asai Y, Yakushi T, Kawagishi I, Homma M (2003) Ion-coupling determinants of Na+-driven and H+-driven flagellar motors. J Mol Biol 327:453–463

    Article  CAS  PubMed  Google Scholar 

  • Blair DF (2003) Flagellar movement driven by proton translocation. FEBS Lett 545:86–95

    Article  CAS  PubMed  Google Scholar 

  • Dasgupta N, Ramphal R (2001) Interaction of the antiactivator FleN with the transcriptional activator FleQ regulates flagellar number in Pseudomonas aeruginosa. J Bacteriol 183:6636–6644

    Article  CAS  PubMed  Google Scholar 

  • Dasgupta N, Arora SK, Ramphal R (2000) fleN, a gene that regulates flagellar number in Pseudomonas aeruginosa. J Bacteriol 182:357–364

    Article  CAS  PubMed  Google Scholar 

  • Doyle TB, Hawkins AC, McCarter LL (2004) The complex flagellar torque generator of Pseudomonas aeruginosa. J Bacteriol 186:6341–6350

    Article  CAS  PubMed  Google Scholar 

  • Haefele DM, Lindow SE (1987) Flagellar motility confers epiphytic fitness advantages upon Pseudomonas syringae. Appl Environ Microbiol 53:2528–2533

    CAS  PubMed  Google Scholar 

  • Hattermann DR, Ries SM (1989) Motility of Pseudomonas syringae pv. glycinea and its role in infection. Phytopathology 79:284–289

    Article  Google Scholar 

  • Hirota N, Imae Y (1983) Na+-driven flagellar motors of an alkalophilic Bacillus strain YN-1. J Biol Chem 258:10577–10581

    CAS  PubMed  Google Scholar 

  • Hossain MM, Shibata S, Aizawa S, Tsuyumu S (2005) Motility is an important determinant for pathogenesis of Erwinia carotovora subsp. carotovora. Physiol Mol Plant Pathol 66:134–143

    Article  CAS  Google Scholar 

  • Ichinose Y, Shimizu R, Ikeda Y, Taguchi F, Marutani M, Mukaihara T, Inagaki Y, Toyoda K, Shiraishi T (2003) Need for flagella for complete virulence of Pseudomonas syringae pv. tabaci: genetic analysis with flagella-defective mutants ∆fliC and ∆fliD in host tobacco plants. J Gen Plant Pathol 69:244–249

    Article  CAS  Google Scholar 

  • Ito M, Hicks DB, Henkin TM, Guffanti AA, Powers BD, Zvi L, Uematsu K, Krulwich TA (2004) MotPS is the stator-force generator for motility of alkaliphilic Bacillus, and its homologue is a second functional Mot in Bacillus subtilis. Mol Microbiol 53:1035–1049

    Article  CAS  PubMed  Google Scholar 

  • Kiiyukia C, Kawakami H, Hashimoto H (1993) Effect of sodium chloride, pH and organic nutrients on the motility of Vibrio cholerae non-01. Microbios 73:249–255

    CAS  PubMed  Google Scholar 

  • Larsen SH, Adler J, Gargus JJ, Hogg RW (1974) Chemomechanical coupling without ATP: the source of energy for motility and chemotaxis in bacteria. Proc Natl Acad Sci USA 71:1239–1243

    Article  CAS  PubMed  Google Scholar 

  • Manson MD, Tedesco P, Berg HC, Harold FM, Van der Drift C (1977) A protonmotive force drives bacterial flagella. Proc Natl Acad Sci USA 74:3060–3064

    Article  CAS  PubMed  Google Scholar 

  • McCarter LL (2001) Polar flagellar motility of the Vibrionaceae. Microbiol Mol Biol 65:445–462

    Article  CAS  Google Scholar 

  • McClean KH, Winson MK, Fish L, Taylor A, Chhabra SR, Camara M, Daykin M, Lamb JH, Swift S, Bycroft BW, Stewart GS, Williams P (1997) Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiology 143:3703–3711

    Article  CAS  PubMed  Google Scholar 

  • Panopoulos NJ, Schroth MN (1974) Role of flagellar motility in the invasion of bean leaves by Pseudomonas phaseolicola. Phytopathology 64:1389–1397

    Article  Google Scholar 

  • Paulick A, Koerdt A, Lassak J, Huntley S, Wilms I, Narberhaus F, Thormann KM (2009) Two different stator systems drive a single polar flagellum in Shewanella oneidensis MR-1. Mol Microbiol 71:836–850

    Article  CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Savli H, Karadenizli A, Kolayli F, Gundes S, Ozbek U, Vahaboglu H (2003) Expression stability of six housekeeping genes: a proposal for resistance gene quantification studies of Pseudomonas aeruginosa by real-time quantitative RT-PCR. J Med Microbiol 52:403–408

    Article  CAS  PubMed  Google Scholar 

  • Schäfer A, Tauch A, Jäger W, Kalinowski J, Thierbach G, Pühler A (1994) Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145:69–73

    Article  PubMed  Google Scholar 

  • Shaw PD, Ping G, Daly SL, Cha C, Cronan JE Jr, Rinehart KL, Farrand SK (1997) Detecting and characterizing N-acyl-homoserine lactone signal molecule by thin-layer chromatography. Proc Natl Acad Sci USA 94:6036–6041

    Article  CAS  PubMed  Google Scholar 

  • Shimizu R, Taguchi F, Marutani M, Mukaihara T, Inagaki Y, Toyoda K, Shiraishi T, Ichinose Y (2003) The ∆fliD mutant of Pseudomonas syringae pv. tabaci, which secretes flagellin monomers, induces a strong hypersensitive reaction (HR) in non-host tomato cells. Mol Genet Genomics 269:21–30

    CAS  PubMed  Google Scholar 

  • Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ, Brinkman FS, Hufnagle WO, Kowalik DJ, Lagrou M, Garber RL, Goltry L, Tolentino E, Westbrock-Wadman S, Yuan Y, Brody LL, Coulter SN, Folger KR, Kas A, Larbig K, Lim R, Smith K, Spencer D, Wong GK, Wu Z, Paulsen IT, Reizer J, Saier MH, Hancock RE, Lory S, Olson MV (2000) Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen. Nature 406:959–964

    Article  CAS  PubMed  Google Scholar 

  • Taguchi F, Shimizu R, Nakajima R, Toyoda K, Shiraishi T, Ichinose Y (2003) Differential effects of flagellins from Pseudomonas syringae pv. tabaci, tomato and glycinea on plant defense response. Plant Physiol Biochem 41:165–174

    Article  CAS  Google Scholar 

  • Taguchi F, Ogawa Y, Takeuchi K, Suzuki T, Toyoda K, Shiraishi T, Ichinose Y (2006a) A homologue of the 3-oxoacyl-(acyl carrier protein) synthase III gene located in the glycosylation island of Pseudomonas syringae pv. tabaci regulates virulence factors via N-acyl homoserine lactone and fatty acid synthesis. J Bacteriol 188:8560–8572

    Article  Google Scholar 

  • Taguchi F, Takeuchi K, Katoh E, Murata K, Suzuki T, Marutani M, Kawasaki T, Eguchi M, Katoh S, Kaku H, Yasuda C, Inagaki Y, Toyoda K, Shiraishi T, Ichinose Y (2006b) Identification of glycosylation genes and glycosylated amino acids of flagellin in Pseudomonas syringae pv. tabaci. Cell Microbiol 8:923–938

    Article  CAS  PubMed  Google Scholar 

  • Taguchi F, Shibata S, Suzuki T, Ogawa Y, Aizawa S, Takeuchi K, Ichinose Y (2008) Effects of glycosylation on swimming ability and flagella polymorphic transformation of Pseudomonas syringae pv. tabaci 6605. J Bacteriol 190:764–768

    Article  CAS  PubMed  Google Scholar 

  • Taguchi F, Suzuki T, Inagaki Y, Toyoda K, Shiraishi T, Ichinose Y (2010a) Siderophore pyoverdine of Pseudomonas syringae pv. tabaci 6605 is an intrinsic virulence factor on host tobacco infection. J Bacteriol 192:117–126

    Article  CAS  PubMed  Google Scholar 

  • Taguchi F, Yamamoto M, Ohnishi-Kameyama M, Iwaki M, Yoshida M, Ishii T, Konishi T, Ichinose Y (2010b) Defects in flagellin glycosylation affect the virulence of Pseudomonas syringae pv. tabaci 6605. Microbiology 156:72–80

    Article  CAS  PubMed  Google Scholar 

  • Tans-Kersten J, Brown D, Allen C (2004) Swimming motility, a virulence trait of Ralstonia solanacearum, is regulated by FlhDC and the plant host environment. Mol Plant Microbe Interact 17:686–695

    Article  CAS  PubMed  Google Scholar 

  • Terahara N, Krulwich TA, Ito M (2008) Mutations alter the sodium versus proton use of a Bacillus clausii flagellar motor and confer dual ion use on Bacillus subtilis motors. Proc Natl Acad Sci USA 105:14359–14364

    Article  CAS  PubMed  Google Scholar 

  • Terashima H, Fukuoka H, Yakushi T, Kojima S, Homma M (2006) The Vibrio motor proteins, MotX and MotY, are associated with the basal body of Na-driven flagella and required for stator formation. Mol Microbiol 62:1170–1180

    Article  CAS  PubMed  Google Scholar 

  • Thormann KM, Paulick A (2010) Tuning the flagellar motor. Microbiology 156:1275–1283

    Article  CAS  PubMed  Google Scholar 

  • Toutain CM, Zegans ME, O’Toole GA (2005)  Evidence for two flagellar stators and their role in the motility of Pseudomonas aeruginosa. J Bacteriol 187:771–777

    Article  CAS  PubMed  Google Scholar 

  • Toutain CM, Caizza NC, Zegans ME, O’Toole GA (2007) Roles for flagellar stators in biofilm formation by Pseudomonas aeruginosa. Res Microbiol 158:471–477

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Suzuki A, Mariconda S, Porwollik S, Harshey RM (2005) Sensing wetness: a new role for the bacterial flagellum. EMBO J 24:2034–2042

    Article  CAS  PubMed  Google Scholar 

  • Watnick PI, Lauriano CM, Klose KE, Croal L, Kolter R (2001) The absence of a flagellum leads to altered colony morphology, biofilm development and virulence in Vibrio cholerae O139. Mol Microbiol 39:223–235

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the Leaf Tobacco Research Laboratory of Japan Tobacco Inc. for providing Pta 6605. We are also grateful to Dr. P. Williams (Nottingham University, UK) and Dr. T. Ikeda (Utsunomiya University, Japan) for providing Chromobacterium violaceum CV026 and the chemically synthesized AHLs, respectively. This work was supported in part by the Program for Promotion of Basic Research Activities for Innovative Bioscience (PROBRAIN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuki Ichinose.

Additional information

Communicated by G. Klug.

Nucleotide sequence accession numbers: The nucleotide sequences of motAB and motCD with surrounding regions have been deposited in the DDBJ, EMBL, and GenBank nucleotide sequence databases under the accession number AB511948 for cheY2, cheZ, cheA2, cheB3, motC, and motD and AB511949 for motA and motB.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1901 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kanda, E., Tatsuta, T., Suzuki, T. et al. Two flagellar stators and their roles in motility and virulence in Pseudomonas syringae pv. tabaci 6605. Mol Genet Genomics 285, 163–174 (2011). https://doi.org/10.1007/s00438-010-0594-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-010-0594-8

Keywords

Navigation