Skip to main content

Advertisement

Log in

Development of an efficient gene targeting system in Colletotrichum higginsianum using a non-homologous end-joining mutant and Agrobacterium tumefaciens-mediated gene transfer

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

The hemibiotrophic ascomycete Colletotrichum higginsianum is the casual agent of anthracnose disease of cruciferous plants. High efficiency transformation by Agrobacterium tumefaciens-mediated gene transfer has been established for this fungus. However, targeted gene mutagenesis through homologous recombination rarely occurs in C. higginsianum. We have identified and disrupted the C. higginsianum homologue of the human Ku70 gene, ChKU70, which encodes a protein that plays a role in non-homologous end-joining for repair of DNA breaks. chku70 mutants showed a dramatic increase in the frequency of integration of introduced exogenous DNA fragments by homologous recombination without any detectable phenotypic defects. This result demonstrates that the chku70 mutant is an efficient recipient for targeted gene mutagenesis in C. higginsianum. We have also developed a novel approach [named direct repeat recombination-mediated gene targeting (DRGT)] for targeted gene disruption through Agrobacterium tumefaciens-mediated gene transfer. DRGT utilizes homologous recombination between repeated sequences on the T-DNA flanking a partial fragment of the target gene. Our results suggest that DRGT in the chku70 mutant background could be a useful tool for rapid isolation of targeted gene disruptants in C. higginsianum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Bähler J, Wu JQ, Longtine MS, Shah NG, McKenzie A III, Steever AB, Wach A, Philippsen P, Pringle JR (1998) Heterologous modules for efficient and versatile PCR-based gene targeting in Schizosaccharomyces pombe. Yeast 14:943–951

    Article  PubMed  Google Scholar 

  • Bailey JA, Jeger MJ (1992) Colletotrichum: biology pathology and control. CAB International, Wallingford

    Google Scholar 

  • Baudin A, Ozier-Kalogeropoulos O, Denouel A, Lacroute F, Cullin C (1993) A simple and efficient method for direct gene deletion in Saccharomyces cerevisiae. Nucleic Acids Res 21:3329–3330

    Article  CAS  PubMed  Google Scholar 

  • Birker D, Heidrich K, Takahara H, Narusaka M, Deslandes L, Narusaka Y, Reymond M, Parker JE, O’Connell R (2009) A locus conferring resistance to Colletotrichum higginsianum is shared by four geographically distinct Arabidopsis accessions. Plant J 60:602–613

    Article  CAS  PubMed  Google Scholar 

  • Bruchez JJP, Eberle J, Russo VEA (1993) Regulatory sequences in the transcription of Neurospora crassa genes: CAAT box, TATA box, introns, poly(A) tail formation sequences. Fungal Genet Newsl 40:89–96

    Google Scholar 

  • Bundock P, den Dulk-Ras A, Beijersbergen A, Hooykaas PJ (1995) Trans-kingdom T-DNA transfer from Agrobacterium tumefaciens to Saccharomyces cerevisiae. EMBO J 14:3206–3214

    CAS  PubMed  Google Scholar 

  • Critchlow SE, Jackson SP (1998) DNA end-joining: from yeast to man. Trends Biochem Sci 23:394–398

    Article  CAS  PubMed  Google Scholar 

  • da Silva Ferreira ME, Kress MRVZ, Savoldi M, Goldman MHS, Härtl A, Heinekamp T, Brakhage AA, Goldman GH (2006) The akuB KU80 mutant deficient for nonhomologous end joining is a powerful tool for analyzing pathogenicity in Aspergillus fumigatus. Eukaryot Cell 5:207–211

    Article  PubMed  Google Scholar 

  • Fincham JR (1989) Transformation in fungi. Microbiol Rev 53:148–170

    CAS  PubMed  Google Scholar 

  • Galagan JE, Henn MR, Ma LJ, Cuomo CA, Birren B (2005) Genomics of the fungal kingdom: insights into eukaryotic biology. Genome Res 15:1620–1631

    Article  CAS  PubMed  Google Scholar 

  • Hefferin ML, Tomkinson AE (2005) Mechanism of DNA double-strand break repair by non-homologous end joining. DNA Repair (Amst) 4:639–648

    CAS  Google Scholar 

  • Huser A, Takahara H, Schmalenbach W, O’Connell R (2009) Discovery of pathogenicity genes in the crucifer anthracnose fungus Colletotrichum higginsianum, using random insertional mutagenesis. Mol Plant Microbe Interact 22:143–156

    Article  CAS  PubMed  Google Scholar 

  • Ishibashi K, Suzuki K, Ando Y, Takakura C, Inoue H (2006) Nonhomologous chromosomal integration of foreign DNA is completely dependent on MUS-53 (human Lig4 homolog) in Neurospora. Proc Natl Acad Sci USA 103:14871–14876

    Article  CAS  PubMed  Google Scholar 

  • Kanaar R, Hoeijmakers JHJ, van Gent DC (1998) Molecular mechanisms of DNA double-strand break repair. Trends Cell Biol 8:483–489

    Article  CAS  PubMed  Google Scholar 

  • Kito H, Fujikawa T, Moriwaki A, Tomono A, Izawa M, Kamakura T, Ohashi M, Sato H, Abe K, Nishimura M (2008) MgLig4, a homolog of Neurospora crassa Mus-53 (DNA ligase IV), is involved in, but not essential for, non-homologous end-joining events in Magnaporthe grisea. Fungal Genet Biol 45:1543–1551

    Article  CAS  PubMed  Google Scholar 

  • Kleemann J, Takahara H, Stüber K, O’Connell R (2008) Identification of soluble secreted proteins from appressoria of Colletotrichum higginsianum by analysis of expressed sequence tags. Microbiology 154:1204–1217

    Article  CAS  PubMed  Google Scholar 

  • Michielse CB, Hooykaas PJJ, van den Hondel CAMJJ, Ram AFJ (2005) Agrobacterium-mediated transformation as a tool for functional genomics in fungi. Curr Genet 48:1–17

    Article  CAS  PubMed  Google Scholar 

  • Mizutani O, Kudo Y, Saito A, Matsuura T, Inoue H, Abe K, Gomi K (2008) A defect of LigD (human Lig4 homolog) for nonhomologous end joining significantly improves efficiency of gene-targeting in Aspergillus oryzae. Fungal Genet Biol 45:878–889

    Article  CAS  PubMed  Google Scholar 

  • Münch S, Lingner U, Floss DS, Ludwig N, Sauer N, Deising HB (2008) The hemibiotrophic lifestyle of Colletotrichum species. J Plant Physiol 165:41–51

    Article  PubMed  Google Scholar 

  • Narusaka Y, Narusaka M, Park P, Kubo Y, Hirayama T, Seki M, Shiraishi T, Ishida J, Nakashima M, Enju A, Sakurai T, Satou M, Kobayashi M, Shinozaki K (2004) RCH1, a locus in Arabidopsis that confers resistance to the hemibiotrophic fungal pathogen Colletotrichum higginsianum. Mol Plant Microbe Interact 17:749–762

    Article  CAS  PubMed  Google Scholar 

  • Narusaka M, Shirasu K, Noutoshi Y, Kubo Y, Shiraishi T, Iwabuchi M, Narusaka Y (2009) RRS1 and RPS4 provide a dual resistance-gene system against fungal and bacterial pathogens. Plant J 60:218–226

    Article  CAS  PubMed  Google Scholar 

  • Nayak T, Szewczyk E, Oakley CE, Osmani A, Ukil L, Murray SL, Hynes MJ, Osmani SA, Oakley BR (2006) A versatile and efficient gene-targeting system for Aspergillus nidulans. Genetics 172:1557–1566

    Article  CAS  PubMed  Google Scholar 

  • Nielsen JB, Nielsen ML, Mortensen UH (2008) Transient disruption of non-homologous end-joining facilitates targeted genome manipulations in the filamentous fungus Aspergillus nidulans. Fungal Genet Biol 45:165–170

    Article  CAS  PubMed  Google Scholar 

  • Ninomiya Y, Suzuki K, Ishii C, Inoue H (2004) Highly efficient gene replacements in Neurospora strains deficient for nonhomologous end-joining. Proc Natl Acad Sci USA 101:12248–12253

    Article  CAS  PubMed  Google Scholar 

  • O’Connell RJ, Panstruga R (2006) Tête á tête inside a plant cell: establishing compatibility between plants and biotrophic fungi and oomycetes. New Phytol 171:699–718

    Article  PubMed  Google Scholar 

  • O’Connell RJ, Herbert C, Sreenivasaprasad S, Khatib M, Esquerré-Tugayé MT, Dumas B (2004) A novel ArabidopsisColletotrichum pathosystem for the molecular dissection of plant–fungal interactions. Mol Plant Microbe Interact 17:272–282

    Article  PubMed  Google Scholar 

  • Pastink A, Eeken JCJ, Lohman PHM (2001) Genomic integrity and the repair of double-strand DNA breaks. Mutat Res 480–481:37–50

    PubMed  Google Scholar 

  • Perfect SE, Hughes HB, O’Connell RJ, Green JR (1999) Colletotrichum: a model genus for studies on pathology and fungal–plant interactions. Fungal Genet Biol 27:186–198

    Article  CAS  PubMed  Google Scholar 

  • Plate I, Hallwyl SCL, Shi I, Krejci L, Müller C, Albertsen L, Sung P, Mortensen UH (2008) Interaction with RPA is necessary for Rad52 repair center formation and for its mediator activity. J Biol Chem 283:29077–29085

    Article  CAS  PubMed  Google Scholar 

  • Pöggeler S, Kück U (2006) Highly efficient generation of signal transduction knockout mutants using a fungal strain deficient in the mammalian ku70 ortholog. Gene 378:1–10

    Article  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Shrivastav M, De Haro LP, Nickoloff JA (2008) Regulation of DNA double-strand break repair pathway choice. Cell Res 18:134–147

    Article  CAS  PubMed  Google Scholar 

  • Sweigard JA, Chumley F, Carroll A, Farrall L, Valent B (1997) A series of vectors for fungal transformation. Fungal Genet Newsl 44:52–55

    Google Scholar 

  • Takahara H, Tsuji G, Kubo Y, Yamamoto M, Toyoda K, Inagaki Y, Ichinose Y, Shiraishi T (2004) Agrobacterium tumefaciens-mediated transformation as a tool for random mutagenesis of Colletotrichum trifolii. J Gen Plant Pathol 70:93–96

    Article  CAS  Google Scholar 

  • Takahara H, Dolf A, Endl E, O’Connell R (2009) Flow cytometric purification of Colletotrichum higginsianum biotrophic hyphae from Arabidopsis leaves for stage-specific transcriptome analysis. Plant J 59:672–683

    Article  CAS  PubMed  Google Scholar 

  • Takahashi T, Masuda T, Koyama Y (2006) Enhanced gene targeting frequency in ku70 and ku80 disruption mutants of Aspergillus sojae and Aspergillus oryzae. Mol Genet Genomics 275:460–470

    Article  CAS  PubMed  Google Scholar 

  • Takano Y, Kubo Y, Shimizu K, Mise K, Okuno T, Furusawa I (1995) Structural analysis of PKS1, a polyketide synthase gene involved in melanin biosynthesis in Colletotrichum lagenarium. Mol Gen Genet 249:162–167

    Article  CAS  PubMed  Google Scholar 

  • Tanaka S, Yamada K, Yabumoto K, Fujii S, Huser A, Tsuji G, Koga H, Dohi K, Mori M, Shiraishi T, O’Connell R, Kubo Y (2007) Saccharomyces cerevisiae SSD1 orthologues are essential for host infection by the ascomycete plant pathogens Colletotrichum lagenarium and Magnaporthe grisea. Mol Microbiol 64:1332–1349

    Article  CAS  PubMed  Google Scholar 

  • Tanaka S, Ishihama N, Yoshioka H, Huser A, O’Connell R, Tsuji G, Tsuge S, Kubo Y (2009) The Colletotrichum orbiculare SSD1 mutant enhances Nicotiana benthamiana basal resistance by activating a mitogen-activated protein kinase pathway. Plant Cell 21:2517–2526

    Article  CAS  PubMed  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed  Google Scholar 

  • Tsuji G, Takeda T, Furusawa I, Horino O, Kubo Y (1997) Carpropamid, an anti-rice blast fungicide, inhibits scytalone dehydratase activity and appressorial penetration in Colletotrichum lagenarium. Pestic Biochem Physiol 57:211–219

    Article  CAS  Google Scholar 

  • Tsuji G, Fujii S, Fujihara N, Hirose C, Tsuge S, Shiraishi T, Kubo Y (2003) Agrobacterium tumefaciens-mediated transformation for random insertional mutagenesis in Colletotrichum lagenarium. J Gen Plant Pathol 69:230–239

    Article  CAS  Google Scholar 

  • Van Dyck E, Stasiak AZ, Stasiak A, West SC (1999) Binding of double-strand breaks in DNA by human Rad52 protein. Nature 398:728–731

    Article  PubMed  Google Scholar 

  • Villalba F, Collemare J, Landraud P, Lambou K, Brozek V, Cirer B, Morin D, Bruel C, Beffa R, Lebrun MH (2008) Improved gene targeting in Magnaporthe grisea by inactivation of MgKU80 required for non-homologous end joining. Fungal Genet Biol 45:68–75

    Article  CAS  PubMed  Google Scholar 

  • Weld RJ, Plummer KM, Carpenter MA, Ridgway HJ (2006) Approaches to functional genomics in filamentous fungi. Cell Res 16:31–44

    Article  CAS  PubMed  Google Scholar 

  • Wendland J (2003) PCR-based methods facilitate targeted gene manipulations and cloning procedures. Curr Genet 44:115–123

    Article  CAS  PubMed  Google Scholar 

  • Xu JR, Peng YL, Dickman MB, Sharon A (2006) The dawn of fungal pathogen genomics. Annu Rev Phytopathol 44:337–366

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science & Technology (No. 19780038). We also acknowledge Sankyo Agro Co. Ltd. for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gento Tsuji.

Additional information

Communicated by A. Aguilera.

T. Ushimaru and H. Terada contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 98 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ushimaru, T., Terada, H., Tsuboi, K. et al. Development of an efficient gene targeting system in Colletotrichum higginsianum using a non-homologous end-joining mutant and Agrobacterium tumefaciens-mediated gene transfer. Mol Genet Genomics 284, 357–371 (2010). https://doi.org/10.1007/s00438-010-0572-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-010-0572-1

Keywords