Skip to main content
Log in

Identification of genes that affect sensitivity to 5-bromodeoxyuridine in the yeast Saccharomyces cerevisiae

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Small molecules that exhibit biological effects have been successfully used to study various biological phenomena. 5-Bromodeoxyuridine (BrdU) is a thymidine analog that affects various biological processes, such as cellular differentiation and cellular senescence in cultured mammalian cells. Although BrdU is thought to modulate these phenomena by changing chromatin structure and gene expression, the molecular mechanisms for the action of BrdU are not understood well. To analyze the molecular mechanisms of BrdU with genetic methods, we used the yeast Saccharomyces cerevisiae as a model. Our genetic screening has revealed that a defect in MPT5/HTR1/UTH4/PUF5 led to an increased sensitivity to BrdU, and that overexpression of VHT1 or SDT1 led to resistance to BrdU. The increased sensitivity to BrdU caused by a defect in MPT5 was suppressed by a mutation in SIR2, SIR3, or SIR4, which is involved in chromatin silencing and transcriptional repression. These findings suggest that chromatin silencing proteins are involved in the modulation of the cellular phenomena by BrdU, and would provide clues to answer the old question of how BrdU affects various biological phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aparicio OM, Billington BL, Gottschling DE (1991) Modifiers of position effect are shared between telomeric and silent mating-type loci in S. cerevisiae. Cell 66:1279–1287

    Article  CAS  PubMed  Google Scholar 

  • Bischoff R, Holtzer H (1970) Inhibition of myoblast fusion after one round of DNA synthesis in 5-bromodeoxyuridine. J Cell Biol 44:134–150

    Article  CAS  PubMed  Google Scholar 

  • Bryk M, Banerjee M, Murphy M, Knudsen KE, Garfinkel DJ, Curcio MJ (1997) Transcriptional silencing of Ty1 elements in the RDN1 locus of yeast. Genes Dev 11:255–269

    Article  CAS  PubMed  Google Scholar 

  • Chen T, Kurjan J (1997) Saccharomyces cerevisiae Mpt5p interacts with Sst2p and plays roles in pheromone sensitivity and recovery from pheromone arrest. Mol Cell Biol 17:3429–3439

    CAS  PubMed  Google Scholar 

  • Cockell M, Renauld H, Watt P, Gasser SM (1998) Sif2p interacts with Sir4p amino-terminal domain and antagonizes telomeric silencing in yeast. Curr Biol 8:787–790

    Article  CAS  PubMed  Google Scholar 

  • Fujii M, Ito H, Hasegawa T, Suzuki T, Adachi N, Ayusawa D (2002) 5-Bromo-2′-deoxyuridine efficiently suppresses division potential of the yeast Saccharomyces cerevisiae. Biosci Biotechnol Biochem 66:906–909

    Article  CAS  PubMed  Google Scholar 

  • Gerber AP, Herschlag D, Brown PO (2004) Extensive association of functionally and cytotopically related mRNAs with Puf family RNA-binding proteins in yeast. PLoS Biol 2:E79

    Article  PubMed  Google Scholar 

  • Gotta M, Strahl-Bolsinger S, Renauld H, Laroche T, Kennedy BK, Grunstein M, Gasser SM (1997) Localization of Sir2p: the nucleolus as a compartment for silent information regulators. EMBO J 16:3243–3255

    Article  CAS  PubMed  Google Scholar 

  • Gottschling DE, Aparicio OM, Billington BL, Zakian VA (1990) Position effect at S. cerevisiae telomeres: reversible repression of Pol II transcription. Cell 63:751–762

    Article  CAS  PubMed  Google Scholar 

  • Gu W, Deng Y, Zenklusen D, Singer RH (2004) A new yeast PUF family protein, Puf6p, represses ASH1 mRNA translation and is required for its localization. Genes Dev 18:1452–1465

    Article  CAS  PubMed  Google Scholar 

  • Hata H, Mitsui H, Liu H, Bai Y, Denis CL, Shimizu Y, Sakai A (1998) Dhh1p, a putative RNA helicase, associates with the general transcription factors Pop2p and Ccr4p from Saccharomyces cerevisiae. Genetics 148:571–579

    CAS  PubMed  Google Scholar 

  • Hook BA, Goldstrohm AC, Seay DJ, Wickens M (2007) Two yeast PUF proteins negatively regulate a single mRNA. J Biol Chem 282:15430–15438

    Article  CAS  PubMed  Google Scholar 

  • Imai S, Armstrong CM, Kaeberlein M, Guarente L (2000) Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403:795–800

    Article  CAS  PubMed  Google Scholar 

  • Ivy JM, Klar AJ, Hicks JB (1986) Cloning and characterization of four SIR genes of Saccharomyces cerevisiae. Mol Cell Biol 6:688–702

    CAS  PubMed  Google Scholar 

  • Kaeberlein M, Guarente L (2002) Saccharomyces cerevisiae MPT5 and SSD1 function in parallel pathways to promote cell wall integrity. Genetics 160:83–95

    CAS  PubMed  Google Scholar 

  • Kaeberlein M, Andalis AA, Liszt GB, Fink GR, Guarente L (2004) Saccharomyces cerevisiae SSD1-V confers longevity by a Sir2p-independent mechanism. Genetics 166:1661–1672

    Article  CAS  PubMed  Google Scholar 

  • Kennedy BK, Austriaco NR Jr, Zhang J, Guarente L (1995) Mutation in the silencing gene SIR4 can delay aging in S. cerevisiae. Cell 80:485–496

    Article  CAS  PubMed  Google Scholar 

  • Kennedy BK, Gotta M, Sinclair DA, Mills K, McNabb DS, Murthy M, Pak SM, Laroche T, Gasser SM, Guarente L (1997) Redistribution of silencing proteins from telomeres to the nucleolus is associated with extension of life span in S. cerevisiae. Cell 89:381–391

    Article  CAS  PubMed  Google Scholar 

  • Kikuchi Y, Oka Y, Kobayashi M, Uesono Y, Toh-e A, Kikuchi A (1994) A new yeast gene, HTR1, required for growth at high temperature, is needed for recovery from mating pheromone-induced G1 arrest. Mol Gen Genet 245:107–116

    Article  CAS  PubMed  Google Scholar 

  • Klar AJ, Strathern JN, Broach JR, Hicks JB (1981) Regulation of transcription in expressed and unexpressed mating type cassettes of yeast. Nature 289:239–244

    Article  CAS  PubMed  Google Scholar 

  • Landry J, Sutton A, Tafrov ST, Heller RC, Stebbins J, Pillus L, Sternglanz R (2000) The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases. Proc Natl Acad Sci USA 97:5807–5811

    Article  CAS  PubMed  Google Scholar 

  • Li L, Lu Y, Qin LX, Bar-Joseph Z, Werner-Washburne M, Breeden LL (2009) Budding yeast SSD1-V regulates transcript levels of many longevity genes and extends chronological life span in purified quiescent cells. Mol Biol Cell 20:3851–3864

    Article  CAS  PubMed  Google Scholar 

  • Lin SY, Riggs AD (1976) The binding of lac repressor and the catabolite gene activator protein to halogen-substituted analogues of poly[d(A-T)]. Biochim Biophys Acta 432:185–191

    CAS  PubMed  Google Scholar 

  • Lin S, Lin D, Riggs AD (1976) Histones bind more tightly to bromodeoxyuridine-substituted DNA than to normal DNA. Nucleic Acids Res 3:2183–2191

    CAS  PubMed  Google Scholar 

  • Marshall M, Mahoney D, Rose A, Hicks JB, Broach JR (1987) Functional domains of SIR4, a gene required for position effect regulation in Saccharomyces cerevisiae. Mol Cell Biol 7:4441–4452

    CAS  PubMed  Google Scholar 

  • Michishita E, Nakabayashi K, Suzuki T, Kaul SC, Ogino H, Fujii M, Mitsui Y, Ayusawa D (1999) 5-Bromodeoxyuridine induces senescence-like phenomena in mammalian cells regardless of cell type or species. J Biochem (Tokyo) 126:1052–1059

    CAS  Google Scholar 

  • Miki K, Shimizu M, Fujii M, Hossain MN, Ayusawa D (2008) 5-Bromouracil disrupts nucleosome positioning by inducing A-form-like DNA conformation in yeast cells. Biochem Biophys Res Commun 368:662–669

    Article  CAS  PubMed  Google Scholar 

  • Minagawa S, Nakabayashi K, Fujii M, Scherer SW, Ayusawa D (2004) Functional and chromosomal clustering of genes responsive to 5-bromodeoxyuridine in human cells. Exp Gerontol 39:1069–1078

    Article  CAS  PubMed  Google Scholar 

  • Minagawa S, Nakabayashi K, Fujii M, Scherer SW, Ayusawa D (2005) Early BrdU-responsive genes constitute a novel class of senescence-associated genes in human cells. Exp Cell Res 304:552–558

    Article  CAS  PubMed  Google Scholar 

  • Murata Y, Wharton RP (1995) Binding of pumilio to maternal hunchback mRNA is required for posterior patterning in Drosophila embryos. Cell 80:747–756

    Article  CAS  PubMed  Google Scholar 

  • Nakanishi T, Sekimizu K (2002) SDT1/SSM1, a multicopy suppressor of S-II null mutant, encodes a novel pyrimidine 5′-nucleotidase. J Biol Chem 277:22103–22106

    Article  CAS  PubMed  Google Scholar 

  • Ogino H, Satou W, Fujii M, Suzuki T, He Y, Michishita E, Ayusawa D (2002) The human MYOD1 transgene is suppressed by 5-bromodeoxyuridine in mouse myoblasts. J Biochem (Tokyo) 132:953–959

    CAS  Google Scholar 

  • Ohkuni K, Kikuchi Y, Hara K, Taneda T, Hayashi N, Kikuchi A (2006) Suppressor analysis of the mpt5/htr1/uth4/puf5 deletion in Saccharomyces cerevisiae. Mol Genet Genom 275:81–88

    Article  CAS  Google Scholar 

  • Olivas W, Parker R (2000) The Puf3 protein is a transcript-specific regulator of mRNA degradation in yeast. EMBO J 19:6602–6611

    Article  CAS  PubMed  Google Scholar 

  • Rogers J, Ng SK, Coulter MB, Sanwal BD (1975) Inhibition of myogenesis in a rat myoblast line by 5-bromodeoxyuridine. Nature 256:438–440

    Article  CAS  PubMed  Google Scholar 

  • Satou W, Suzuki T, Noguchi T, Ogino H, Fujii M, Ayusawa D (2004) AT-hook proteins stimulate induction of senescence markers triggered by 5-bromodeoxyuridine in mammalian cells. Exp Gerontol 39:173–179

    Article  CAS  PubMed  Google Scholar 

  • Shimoaraiso M, Nakanishi T, Kubo T, Natori S (2000) Transcription elongation factor S-II confers yeast resistance to 6-azauracil by enhancing expression of the SSM1 gene. J Biol Chem 275:29623–29627

    Article  CAS  PubMed  Google Scholar 

  • Smith JS, Boeke JD (1997) An unusual form of transcriptional silencing in yeast ribosomal DNA. Genes Dev 11:241–254

    Article  CAS  PubMed  Google Scholar 

  • Smith JS, Brachmann CB, Celic I, Kenna MA, Muhammad S, Starai VJ, Avalos JL, Escalante-Semerena JC, Grubmeyer C, Wolberger C, Boeke JD (2000) A phylogenetically conserved NAD+-dependent protein deacetylase activity in the Sir2 protein family. Proc Natl Acad Sci USA 97:6658–6663

    Article  CAS  PubMed  Google Scholar 

  • Spassov DS, Jurecic R (2003) The PUF family of RNA-binding proteins: does evolutionarily conserved structure equal conserved function? IUBMB Life 55:359–366

    Article  CAS  PubMed  Google Scholar 

  • Stewart MS, Krause SA, McGhie J, Gray JV (2007) Mpt5p, a stress tolerance- and lifespan-promoting PUF protein in Saccharomyces cerevisiae, acts upstream of the cell wall integrity pathway. Eukaryot Cell 6:262–270

    Article  CAS  PubMed  Google Scholar 

  • Stolz J, Hoja U, Meier S, Sauer N, Schweizer E (1999) Identification of the plasma membrane H+-biotin symporter of Saccharomyces cerevisiae by rescue of a fatty acid-auxotrophic mutant. J Biol Chem 274:18741–18746

    Article  CAS  PubMed  Google Scholar 

  • Suzuki T, Minagawa S, Michishita E, Ogino H, Fujii M, Mitsui Y, Ayusawa D (2001a) Induction of senescence-associated genes by 5-bromodeoxyuridine in HeLa cells. Exp Gerontol 36:465–474

    Article  CAS  PubMed  Google Scholar 

  • Suzuki T, Yaginuma M, Oishi T, Michishita E, Ogino H, Fujii M, Ayusawa D (2001b) 5-Bromodeoxyuridine suppresses position effect variegation of transgenes in HeLa cells. Exp Cell Res 266:53–63

    Article  CAS  PubMed  Google Scholar 

  • Suzuki T, Michishita E, Ogino H, Fujii M, Ayusawa D (2002) Synergistic induction of the senescence-associated genes by 5-bromodeoxyuridine and AT-binding ligands in HeLa cells. Exp Cell Res 276:174–184

    Article  CAS  PubMed  Google Scholar 

  • Tadauchi T, Matsumoto K, Herskowitz I, Irie K (2001) Post-transcriptional regulation through the HO 3′-UTR by Mpt5, a yeast homolog of Pumilio and FBF. EMBO J 20:552–561

    Article  CAS  PubMed  Google Scholar 

  • Takayama S, Fujii M, Kurosawa A, Adachi N, Ayusawa D (2007) Overexpression of HAM1 gene detoxifies 5-bromodeoxyuridine in the yeast Saccharomyces cerevisiae. Curr Genet 52:203–211

    Article  CAS  PubMed  Google Scholar 

  • Tapscott SJ, Lassar AB, Davis RL, Weintraub H (1989) 5-bromo-2′-deoxyuridine blocks myogenesis by extinguishing expression of MyoD1. Science 245:532–536

    Article  CAS  PubMed  Google Scholar 

  • Uesono Y, Toh-e A, Kikuchi Y (1997) Ssd1p of Saccharomyces cerevisiae associates with RNA. J Biol Chem 272:16103–16109

    Article  CAS  PubMed  Google Scholar 

  • Wilt FH, Anderson M (1972) The action of 5-bromodeoxyuridine on differentiation. Dev Biol 28:443–447

    CAS  PubMed  Google Scholar 

  • Zakharov AF, Baranovskaya LI, Ibraimov AI, Benjusch VA, Demintseva VS, Oblapenko NG (1974) Differential spiralization along mammalian mitotic chromosomes. II. 5-bromodeoxyuridine and 5-bromodeoxycytidine-revealed differentiation in human chromosomes. Chromosoma 44:343–359

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Gallegos M, Puoti A, Durkin E, Fields S, Kimble J, Wickens MP (1997) A conserved RNA-binding protein that regulates sexual fates in the C. elegans hermaphrodite germ line. Nature 390:477–484

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. A. Kikuchi (Nagoya University) for providing us with yeast strains, and Dr. A. Sakai, (Mitsubishi Kasei Institute of Life Sciences) for providing us with YEp MPT5. This work was partly supported by the grant for 2008 Strategic Research Project (W20015) of Yokohama City University, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michihiko Fujii.

Additional information

Communicated by T. Ito.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujii, M., Miki, K., Takayama, S. et al. Identification of genes that affect sensitivity to 5-bromodeoxyuridine in the yeast Saccharomyces cerevisiae . Mol Genet Genomics 283, 461–468 (2010). https://doi.org/10.1007/s00438-010-0535-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-010-0535-6

Keywords

Navigation