Skip to main content
Log in

The Sos-recruitment system as a tool to analyze cellular localization of plant proteins: membrane localization of Arabidopsis thaliana PEPINO/PASTICCINO2

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

We have explored a modified cytosolic yeast-two-hybrid Sos-recruitment system (SRS) in order to test for membrane localization of a protein. In this system, membrane localization is assessed by rescue of a yeast strain carrying a temperature-sensitive mutation in the CDC25 gene (cdc25-2) at restrictive temperature. The homologous human Sos (hSos) is capable to replace cdc25-2 provided that it is attached to the membrane because only then hSos is functional. This can be achieved when hSos is artificially fused to a protein containing trans-membrane domains (Tms). GFP/YFP fusion construct analyses of the Arabidopsis thaliana PEPINO/PASTICCINO2 (PEP/PAS2) protein have previously shown disparate cellular localizations although this protein possesses clear Tms. Analysis of N-terminal and C-terminal hSos-PEP/PAS2 fusions respectively suggests, that PEP/PAS2 is an integral membrane protein with cytosolic N- and C-termini. This implies that the protein has an even number of Tms and that the first Tm, a signal peptide, is not cleaved off. Our study shows that SRS is suitable to test for protein membrane localization and possibly for more detailed topological analysis of membrane proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aronheim A, Engelberg D, Li N, ai-Alawi N, Schlessinger J, Karin M (1994) Membrane targeting of the nucleotide exchange factor Sos is sufficient for activating the Ras signaling pathway. Cell 78:49–961

    Article  Google Scholar 

  • Aronheim A, Zandi E, Henneman H, Elledge SJ, Karin M (1997) Isolation of an AP-1 repressor by a novel method for detecting protein–protein interactions. Mol Cell Biol 17:3094–3102

    CAS  PubMed  Google Scholar 

  • Bach L, Michaelson LV, Haslam R, Bellec Y, Gissot L, Marion J, Da Costa M, Boutin JP, Miquel M, Tellier F et al (2008) The very-long chain hydroxy fatty acyl-CoA dehydratase PASTICCINO2 is essential and limiting for plant development. Proc Natl Acad Sci USA 105:14727–14731

    Article  CAS  PubMed  Google Scholar 

  • Bellec Y, Harrar Y, Butaeye C, Darnet S, Bellini C, Faure JD (2002) Pasticcino2 is a protein tyrosine phosphatase-like involved in cell proliferation and differentiation in Arabidopsis. Plant J 32:713–722

    Article  CAS  PubMed  Google Scholar 

  • Broder YC, Katz S, Aronheim A (1998) The Ras recruitment system, a novel approach to the study of protein–protein interactions. Curr Biol 8:1121–1124

    Article  CAS  PubMed  Google Scholar 

  • Coleman CE, Lopes MA, Gillikin JW, Boston RS, Larkins BA (1995) A defective signal peptide in the maize high-lysine mutant floury 2. Proc Natl Acad Sci USA 92:6828–6831

    Article  CAS  PubMed  Google Scholar 

  • Da Costa M, Bach L, Landrieu I, Bellec Y, Catrice O, Brown S, De Veylder L, Lippens G, Inze D, Faure JD (2006) Arabidopsis PASTICCINO2 is an antiphosphatase involved in regulation of cyclin-dependent kinase A. Plant Cell 18:1426–1437

    Article  CAS  PubMed  Google Scholar 

  • Dissmeyer N, Weimer AK, Pusch S, De Schutter K, Alvim Kamei CL, Nowack MK, Novak B, Duan G-L, Zhu Y-G, De Veylder L, Schnittger A (2009) Control of cell proliferation, organ growth, and DNA damage response operate independently of dephosphorylation of the Arabidopsis Cdk1 homolog CDKA;1. Plant Cell 21:3641–3654

    Article  CAS  PubMed  Google Scholar 

  • Ehrhard KN, Jacoby JJ, Fu XY, Jahn R, Dohlman HG (2000) Use of G-protein fusions to monitor integral membrane protein–protein interactions in yeast. Nat Biotechnol 18:1075–1079

    Article  CAS  PubMed  Google Scholar 

  • Fields S, Song O (1989) A novel genetic system to detect protein-protein interactions. Nature 340:245–246

    Article  CAS  PubMed  Google Scholar 

  • Frischmuth S, Kleinow T, Aberle HJ, Wege C, Hulser D, Jeske H (2004) Yeast-two-hybrid systems confirm the membrane-association and oligomerization of BC1 but do not detect and interaction of the movement proteins BC1 and BV1 of Abutilon mosaic geminivirus. Arch Virol 149:2349–2364

    Article  CAS  PubMed  Google Scholar 

  • Gietz RD, Schiestl RH (2007) Large-scale high-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc 2:38–41

    Article  CAS  PubMed  Google Scholar 

  • Gietz RD, Schiestl RH, Willems AR, Woods RA (1995) Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast 11:355–360

    Article  CAS  PubMed  Google Scholar 

  • Gureasko J, Galush WJ, Boykevish S, Sondermann H, Bar-Sagi D, Groves JT, Kuriyan J (2008) Membrane-dependent signal integration by the Ras activator Son of sevenless. Nat Struct Mol Biol 15:452–461

    Article  CAS  PubMed  Google Scholar 

  • Haberer G, Erschadi S, Torres-Ruiz RA (2002) The Arabidopsis gene PEPINO/PASTICCINO2 is required for proliferation control of meristematic and non-meristematic cells and encodes a putative anti-phosphatase. Dev Genes Evol 212:542–550

    Article  CAS  PubMed  Google Scholar 

  • Hirst M, Ho C, Sabourin M, Rudnicki M, Penn L, Sadowski I (2001) A two-hybrid system for transactivator bait proteins. Proc Natl Acad Sci USA 98:8726–8731

    Article  CAS  PubMed  Google Scholar 

  • Hubsman M, Yudkovsky G, Aronheim A (2001) A novel approach for the identification of protein-protein interaction with integral membrane proteins. Nucleic Acids Res 29:e18

    Article  CAS  PubMed  Google Scholar 

  • Hunter T (1998) Anti-phosphatases take stage. Nat Genet 18:303–305

    Article  CAS  PubMed  Google Scholar 

  • Johnsson N, Varshavsky A (1994) Split ubiquitin as a sensor of protein interactions in vivo. Proc Natl Acad Sci USA 91:10340–10344

    Article  CAS  PubMed  Google Scholar 

  • Käll L, Krogh A, Sonnhammer ELL (2004) A combined trans-membrane topology and signal peptide prediction method. J Mol Biol 338:1027–1036

    Article  PubMed  Google Scholar 

  • Kataoka K, Fujiwara KT, Noda M, Nishizawa M (1994) MafB, a new Maf family transcription activator that can associate with Maf and Fos but not with Jun. Mol Cell Biol 14:7581–7591

    CAS  PubMed  Google Scholar 

  • Kihara A, Sakuraba H, Ikeda M, Denpoh A, Igarashi Y (2008) Membrane topology and essential amino acid residues of Phs1, a 3-Hydroxyacyl-CoA dehydratase involved in very long-chain fatty acid elongation. J Biol Chem 283:11199–11209

    Article  CAS  PubMed  Google Scholar 

  • Kim MJ, Kim HR, Paek KH (2006) Arabidopsis tonoplast proteins TIP1 and TIP2 interact with the cucumber mosaic virus 1a replication protein. J Gen Virol 87:3425–3431

    Article  CAS  PubMed  Google Scholar 

  • Kruse C, Hanke S, Vasiliev S, Hennemann H (2006) Protein–protein interaction screening with the Ras-recruitment system. Signal Transduct 6:198–208

    Article  CAS  Google Scholar 

  • Laser H, Bongards C, Schuller J, Heck S, Johnsson N, Lehmnig N (2000) A new screen for protein interactions reveals that the Saccharomyces cerevisiae high mobility group proteins Nhp6A/B are involved in the regulation of the GAL promoter. Proc Natl Acad Sci USA 97:13732–13737

    Article  CAS  PubMed  Google Scholar 

  • Möckli N, Deplazes A, Hassa PO, Zhang Z, Peter M, Hottiger MO, Stagljar I, Auerbach D (2007) Yeast split-ubiquitin-based cytosolic screening system to detect interactions between transcriptionally active proteins. BioTechniques 42:725–730

    Article  PubMed  Google Scholar 

  • Petitjean A, Hilger F, Tatchell K (1990) Comparison of thermosensitive alleles of the CDC25 gene involved in the cAMP metabolism of Saccharomyces cerevisiae. Genetics 124:797–806

    CAS  PubMed  Google Scholar 

  • Schuldiner M, Collins SR, Thompson NJ, Denic V, Bhamidipati A, Punna T, Ihmels J, Andrews B, Boone C, Greenblatt JF, Weissman JS, Krogan NJ (2005) Exploration of the function and organization of the yeast early secretory pathway through an epistatic miniarray profile. Cell 123:507–519

    Article  CAS  PubMed  Google Scholar 

  • Steinmann T, Geldner N, Grebe M, Mangold S, Jackson CL, Paris S, Gälweiler L, Palme K, Jürgens G (1999) Coordinated polar localization of auxin efflux carrier PIN1 by GNOM ARF GEF. Science 286:316–318

    Article  CAS  PubMed  Google Scholar 

  • Tague BW, Chrispeels MJ (1987) The plant vacuolar protein, phytohemagglutinin, is transported to the vacuole of transgenic yeast. J Cell Biol 105:1971–1979

    Article  CAS  PubMed  Google Scholar 

  • Wishart MJ, Dixon JE (1998) Gathering STYX: phosphatase-like form predicts functions for unique protein-interaction domains. TIBS 23:301–306

    CAS  PubMed  Google Scholar 

  • Yamagata T, Kato H, Kuroda S, Abe S, Davies E (2003) Uncleaved legumin in developing maize endosperm: identification, accumulation and putative sub-cellular localization. J Exp Bot 54:913–922

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We owe special thanks to Farhah Assaad for critical reading the first version of the manuscript and Alfons Gierl for generously supporting our projects. We also thank the Deutsche Forschungsgemeinschaft for financial support of this work (DFG To134/2-1 and partially To134/5-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramón A. Torres-Ruiz.

Additional information

Communicated by A. Schnittger.

Electronic supplementary material

Below is the link to the electronic supplementary material.

438_2010_528_MOESM1_ESM.jpg

Predicted trans-membrane domains (Tms) in PEP/PAS2 (“TmConsens”). Shown are predicted Tms in the PEP/PAS2 amino acid sequence (double arrows) and their scores as estimated by the Aramemnon tool. Two weak Tms are indicated by double arrows with stipple lines (top). The consensus scores for the respective predicted Tms (boxes) are given (bottom). For details see text. (JPEG 862 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schönhofer-Merl, S., Torres-Ruiz, R.A. The Sos-recruitment system as a tool to analyze cellular localization of plant proteins: membrane localization of Arabidopsis thaliana PEPINO/PASTICCINO2. Mol Genet Genomics 283, 439–449 (2010). https://doi.org/10.1007/s00438-010-0528-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-010-0528-5

Keywords

Navigation