Molecular Genetics and Genomics

, Volume 283, Issue 5, pp 427–438 | Cite as

Unique evolutionary pattern of numbers of gramineous NBS–LRR genes

Original Paper

Abstract

Nucleotide binding site (NBS)–leucine-rich repeat (LRR) genes belong to the largest class of disease-resistance gene super groups in plants, and their intra- or interspecies nucleotide variations have been studied extensively to understand their evolution and function. However, little is known about the evolutionary patterns of their copy numbers in related species. Here, 129, 245, 239 and 508 NBSs were identified in maize, sorghum, brachypodium and rice, respectively, suggesting considerable variations of these genes. Based on phylogenetic relationships from a total of 496 ancestral branches of grass NBS families, three gene number variation patterns were categorized: conserved, sharing two or more species, and species-specific. Notably, the species-specific NBS branches are dominant (71.6%), while there is only a small percentage (3.83%) of conserved families. In contrast, the conserved families are dominant in 51 randomly selected house-keeping genes (96.1%). The opposite patterns between NBS and the other gene groups suggest that natural selection is responsible for the drastic number variation of NBS genes. The rapid expansion and/or contraction may be a fundamentally important strategy for a species to adapt to the quickly changing species-specific pathogen spectrum. In addition, the small proportion of conserved NBSs suggests that the loss of NBSs may be a general tendency in grass species.

Keywords

NBS–LRR genes Copy number variation Adaptive evolution Gramineous species 

Supplementary material

438_2010_527_MOESM1_ESM.pdf (8.7 mb)
Supplementary Figure S1 (PDF 8,927 kb)
438_2010_527_MOESM2_ESM.pdf (106 kb)
Supplementary Tables S1–S5 (PDF 105 kb)

References

  1. Ameline-Torregrosa C, Wang BB, O’Bleness MS, Deshpande S, Zhu H, Roe B, Young ND, Cannon SB (2008) Identification and characterization of NBS–LRR genes in the model plant Medicago truncatula. Plant Physiol 146:5–21CrossRefPubMedGoogle Scholar
  2. Bailey TL, Elkan C (2005) The value of prior knowledge in discovering motifs with MEME. Proc Int Conf Intell Syst Mol Biol 3:21–29Google Scholar
  3. Bakker EG, Toomajian C, Kreitman M, Bergelson J (2006) A genome-wide survey of R gene polymorphisms in Arabidopsis. Plan Cell 18:1803–1818CrossRefGoogle Scholar
  4. Brunner S, Fengler K, Morgante M, Tingey S, Rafalski A (2005) Evolution of DNA sequence nonhomologies among maize inbreds. Plant Cell 17:343–360CrossRefPubMedGoogle Scholar
  5. Chen Q, Han Z, Jiang H, Tian D, Yang S (2010) Strong positive selection drives rapid diversification of R-genes in Arabidopsis relatives. J Mol Evol 70:137–148Google Scholar
  6. Dangl JL, Jones JD (2001) Plant pathogens and integrated defence responses to infection. Nature 411:826–833CrossRefPubMedGoogle Scholar
  7. Ellis JG, Lawrence GJ, Luck JE, Dodds PN (1999) Identification of regions in alleles of the flax rust resistance gene L that determine differences in gene-for-gene specificity. Plant Cell 11:495–506CrossRefPubMedGoogle Scholar
  8. Emerson JJ, Cardoso-Moreira M, Borevitz JO, Long M (2008) Natural selection shapes genome-wide patterns of copy-number polymorphism in Drosophila melanogaster. Science 320:1629–1631CrossRefPubMedGoogle Scholar
  9. Gaut BS (2002) Evolutionary dynamics of grass genomes. New Phytol 154:15–28CrossRefGoogle Scholar
  10. Hammond-Kosack KE, Jones JD (1997) Plant disease resistance genes. Annu Rev Plant Physiol Plant Mol Biol 48:575–607CrossRefPubMedGoogle Scholar
  11. Hulbert SH, Webb CA, Smith SM, Sun Q (2001) Resistance gene complexes: evolution and utilization. Annu Rev Phytopathol 39:285–312CrossRefPubMedGoogle Scholar
  12. Huo N, Lazo GR, Vogel JP, You FM, Ma Y, Hayden DM, Coleman-Derr D, Hill TA, Dvorak J, Anderson OD, Luo MC, Gu YQ (2008) The nuclear genome of Brachypodium distachyon: analysis of BAC end sequences. Funct Integr Genom 8:135–147CrossRefGoogle Scholar
  13. Jones JD, Dangl JL (2006) The plant immune system. Nature 444:323–329CrossRefPubMedGoogle Scholar
  14. Kohany O, Gentles AJ, Hankus L, Jurka J (2006) Annotation, submission and screening of repetitive elements in Repbase: RepbaseSubmitter and Censor. BMC Bioinform 7:474CrossRefGoogle Scholar
  15. Kuang H, Woo SS, Meyers BC, Nevo E, Michelmor RW (2004) Multiple genetic processes result in heterogeneous rates of evolution within the major cluster disease resistance genes in lettuce. Plant Cell 16:2870–2894CrossRefPubMedGoogle Scholar
  16. Long M, Betrán E, Thornton K, Wang W (2003) The origin of new genes: glimpses from the young and old. Nat Rev Genet 4:865–875CrossRefPubMedGoogle Scholar
  17. Lupas A, Van Dyke M, Stock J (1991) Predicting coiled coils from protein sequences. Science 252:1162–1164CrossRefGoogle Scholar
  18. Lynch M, Crease TJ (1990) The analysis of population survey data on DNA sequence variation. Mol Biol Evol 7:377–394PubMedGoogle Scholar
  19. Matsuoka Y, Vigouroux Y, Goodman MM, Sanche GJ, Buckler E, Doebley J (2002) A single domestication for maize shown by multilocus microsatellite genotyping. Proc Natl Acad Sci USA 99:6080–6084CrossRefPubMedGoogle Scholar
  20. McDowell JM, Simon SA (2008) Molecular diversity at the plant–pathogen interface. Dev Comp Immunol 32:736–744CrossRefPubMedGoogle Scholar
  21. McHale L, Tan X, Koehl P, Michelmore RW (2006) Plant NBS–LRR proteins: adaptable guards. Genome Biol 7:212CrossRefPubMedGoogle Scholar
  22. Meyers BC, Kozik A, Griego A, Kuang H, Michelmore RW (2003) Genome-wide analysis of NBS–LRR-encoding genes in Arabidopsis. Plant Cell 15:809–834CrossRefPubMedGoogle Scholar
  23. Nei M, Gojobori T (1986) Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 3:418–426PubMedGoogle Scholar
  24. Paterson AH, Bowers JE, Bruggmann R, Dubchak I et al (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556CrossRefPubMedGoogle Scholar
  25. Porter BW, Paidi M, Ming R, Alam M, Nishijima WT, Zhu YJ (2009) Genome-wide analysis of Carica papaya reveals a small NBS resistance gene family. Mol Genet Genom 281:266–609Google Scholar
  26. Sacristán S, Vigouroux M, Pedersen C, Skamnioti P, Thordal-Christensen H, Micali C, Brown JK, Ridout CJ (2009) Coevolution between a family of parasite virulence effectors and a class of LINE-1 retrotransposons. PLOS One 4:e7463CrossRefPubMedGoogle Scholar
  27. Scheideler M, Schlaich NL, Fellenberg K, Beissbarth T, Hauser NC, Vingron M, Slusarenko AJ, Hoheisel JD (2002) Monitoring the switch from housekeeping to pathogen defense metabolism in Arabidopsis thaliana using cDNA arrays. J Biol Chem 277:10555–10561CrossRefPubMedGoogle Scholar
  28. Schnable PS, Ware D, Fulton RS, Stein JC, Wei F et al (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115CrossRefPubMedGoogle Scholar
  29. Sun X, Zhang Y, Yang S, Chen JQ, Hohn B, Tian D (2008) Insertion DNA promotes ectopic recombination during meiosis in Arabidopsis. Mol Biol Evol 25:2079–2083CrossRefPubMedGoogle Scholar
  30. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599CrossRefPubMedGoogle Scholar
  31. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680CrossRefPubMedGoogle Scholar
  32. Tian D, Traw MB, Chen JQ, Kreitman M, Bergelson J (2003) Fitness costs of R-gene-mediated resistance in Arabidopsis thaliana. Nature 423:74–77CrossRefPubMedGoogle Scholar
  33. Wang QH, Dooner H (2006) Remarkable variation in maize ge- nome structure inferred from haplotype diversity at the bz locus. Proc Natl Acad Sci USA 103:17644–17649CrossRefPubMedGoogle Scholar
  34. Wang W, Zheng H, Fan C, Li J, Shi J et al (2006) High rate of chimeric gene origination by retroposition in plant genomes. Plant Cell 18:1791–1802CrossRefPubMedGoogle Scholar
  35. Webb CA, Richter TE, Collins NC, Nicolas M, Trick HN, Pryor T, Hulbert SH (2002) Genetic and molecular characterization of the maize rp3 rust resistance locus. Genetics 162:381–394PubMedGoogle Scholar
  36. Yang S, Feng Z, Zhang X, Jiang K, Jin X, Hang Y, Chen JQ, Tian D (2006) Genome-wide investigation on the genetic variations of rice disease resistance genes. Plant Mol Biol 62:181–193CrossRefPubMedGoogle Scholar
  37. Yang S, Zhang X, Yue J, Tian D, Chen JQ (2008) Recent duplication dominates the expansion of the NBS-encoding genes in two woody species. Mol Genet Genom 280:187–198CrossRefGoogle Scholar
  38. Zhang Y, Wang J, Zhang X, Chen JQ, Tian D, Yang S (2009) Genetic signature of rice domestication shown by a variety of genes. J Mol Evol 68:393–402CrossRefPubMedGoogle Scholar
  39. Zhou T, Wang Y, Chen JQ, Araki H, Jing Z, Jiang K, Shen J, Tian D (2004) Genome-wide identification of NBS genes in rice reveals significant expansion of divergent non-TIR NBS Genes. Mol Genet Genom 271:402–415CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Jing Li
    • 1
  • Jing Ding
    • 1
  • Wen Zhang
    • 1
  • Yuanli Zhang
    • 1
  • Ping Tang
    • 1
  • Jian-Qun Chen
    • 1
  • Dacheng Tian
    • 1
  • Sihai Yang
    • 1
  1. 1.State Key Laboratory of Pharmaceutical Biotechnology, School of Life SciencesNanjing UniversityNanjingChina

Personalised recommendations