Skip to main content
Log in

Systematic analysis of GT factor family of rice reveals a novel subfamily involved in stress responses

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

GT factors constitute a plant-specific transcription factor family with a conserved trihelix DNA-binding domain. In this study, comprehensive sequence analysis suggested that 26 putative GT factors exist in rice. Phylogenetic analysis revealed three distinctive subfamilies (GTα, GTβ, and GTγ) of plant GT factors and each subfamily has a unique composition of predicted motifs. We characterized the OsGTγ-1 gene, a typical member of the GTγ subfamily in rice. This gene encodes a protein containing a conserved trihelix domain, and the OsGTγ-1:GFP fusion protein was targeted to nuclei of rice cells. The transcript level of OsGTγ-1 was strongly induced by salt stress and slightly induced by drought and cold stresses and abscisic acid treatment. Two other members of the GTγ subfamily, OsGTγ-2 and OsGTγ-3, were also induced by most of the abiotic stresses. These results suggested that the genes of the GTγ subfamily in rice may be involved in stress responses. A homozygous mutant osgtγ-1 (with T-DNA inserted in the promoter region of OsGTγ-1) showed more sensitive to salt stress than wild-type rice. Overexpression of OsGTγ-1 in rice enhanced salt tolerance at the seedling stage. This evidence suggests that the OsGTγ subfamily may participate in the regulation of stress tolerance in rice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Ayadi M, Delaporte V, Li YF, Zhou DX (2004) Analysis of GT-3a identifies a distinct subgroup of trihelix DNA-binding transcription factors in Arabidopsis. FEBS Lett 562:147–154

    Article  PubMed  CAS  Google Scholar 

  • Bailey TL, Elkan C (1994) Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol 2:28–36

    PubMed  CAS  Google Scholar 

  • Brewer PB, Howles PA, Dorian K, Griffith ME, Ishida T, Kaplan-Levy RN, Kilinc A, Smyth DR (2004) PETAL LOSS, a trihelix transcription factor gene, regulates perianth architecture in the Arabidopsis flower. Development 131:4035–4045

    Article  PubMed  CAS  Google Scholar 

  • Browse J (2005) Jasmonate: an oxylipin signal with many roles in plants. Vitam Horm 72:431–456

    Article  PubMed  CAS  Google Scholar 

  • Buchel AS, Brederode FT, Bol JF, Linthorst HJ (1999) Mutation of GT-1 binding sites in the Pr-1A promoter influences the level of inducible gene expression in vivo. Plant Mol Biol 40:387–396

    Article  PubMed  CAS  Google Scholar 

  • Dehesh K, Bruce WB, Quail PH (1990) A trans-acting factor that binds to a GT-motif in a phytochrome gene promoter. Science 250:1397–1399

    Article  PubMed  CAS  Google Scholar 

  • Dehesh K, Hung H, Tepperman JM, Quail PH (1992) GT-2: a transcription factor with twin autonomous DNA-binding domains of closely related but different target sequence specificity. EMBO J 11:4131–4144

    PubMed  CAS  Google Scholar 

  • Dehesh K, Smith LG, Tepperman JM, Quail PH (1995) Twin autonomous bipartite nuclear localization signals direct nuclear import of GT-2. Plant J 8:25–36

    Article  PubMed  CAS  Google Scholar 

  • Feys BJ, Parker JE (2000) Interplay of signaling pathways in plant disease resistance. Trends Genet 16:449–455

    Article  PubMed  CAS  Google Scholar 

  • Fluhr R, Kuhlemeier C, Nagy F, Chua NH (1986) Organ-specific and light-induced expression of plant genes. Science 232:1106–1112

    Article  PubMed  CAS  Google Scholar 

  • Furihata T, Maruyama K, Fujita Y, Umezawa T, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K (2006) Abscisic acid-dependent multisite phosphorylation regulates the activity of a transcription activator AREB1. Proc Natl Acad Sci USA 103:1988–1993

    Article  PubMed  CAS  Google Scholar 

  • Gao G, Zhong Y, Guo A, Zhu Q, Tang W, Zheng W, Gu X, Wei L, Luo J (2006) DRTF: a database of rice transcription factors. Bioinformatics 22:1286–1287

    Article  PubMed  CAS  Google Scholar 

  • Gao MJ, Lydiate DJ, Li X, Lui H, Gjetvaj B, Hegedus DD, Rozwadowski K (2009) Repression of seed maturation genes by a trihelix transcriptional repressor in Arabidopsis seedlings. Plant Cell 21:54–71

    Article  PubMed  CAS  Google Scholar 

  • Gilmartin PM, Chua NH (1990) Spacing between GT-1 binding sites within a light-responsive element is critical for transcriptional activity. Plant Cell 2:447–455

    Article  PubMed  CAS  Google Scholar 

  • Gilmartin PM, Memelink J, Hiratsuka K, Kay SA, Chua NH (1992) Characterization of a gene encoding a DNA binding protein with specificity for a light-responsive element. Plant Cell 4:839–849

    Article  PubMed  CAS  Google Scholar 

  • Green PJ, Yong MH, Cuozzo M, Kano-Murakami Y, Silverstein P, Chua NH (1988) Binding site requirements for pea nuclear protein factor GT-1 correlate with sequences required for light-dependent transcriptional activation of the rbcS-3A gene. EMBO J 7:4035–4044

    PubMed  CAS  Google Scholar 

  • Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6:271–282

    Article  PubMed  CAS  Google Scholar 

  • Hiratsuka K, Wu X, Fukuzawa H, Chua NH (1994) Molecular dissection of GT-1 from Arabidopsis. Plant Cell 6:1805–1813

    Article  PubMed  CAS  Google Scholar 

  • Huang Y, Xiao B, Xiong L (2007) Characterization of a stress responsive proteinase inhibitor gene with positive effect in improving drought resistance in rice. Planta 226:73–85

    Article  PubMed  CAS  Google Scholar 

  • Kuhn RM, Caspar T, Dehesh K, Quail PH (1993) DNA binding factor GT-2 from Arabidopsis. Plant Mol Biol 23:337–348

    Article  PubMed  CAS  Google Scholar 

  • Kunkel BN, Brooks DM (2002) Cross talk between signaling pathways in pathogen defense. Curr Opin Plant Biol 5:325–331

    Article  PubMed  CAS  Google Scholar 

  • Lam E (1995) Domain analysis of the plant DNA-binding protein GT1a: requirement of four putative alpha-helices for DNA binding and identification of a novel oligomerization region. Mol Cell Biol 15:1014–1020

    PubMed  CAS  Google Scholar 

  • Lapa RAS, Lima JLFC, Santos JLM (1996) Determination of calcium, magnesium, sodium and potassium in wines by FIA using an automatic zone sampling system. Food Chem 55:397–402

    Article  CAS  Google Scholar 

  • Le Gourrierec J, Li YF, Zhou DX (1999) Transcriptional activation by Arabidopsis GT-1 may be through interaction with TFIIA-TBP-TATA complex. Plant J 18:663–668

    Article  PubMed  CAS  Google Scholar 

  • Li X, Qin G, Chen Z, Gu H, Qu LJ (2008) A gain-of-function mutation of transcriptional factor PTL results in curly leaves, dwarfism and male sterility by affecting auxin homeostasis. Plant Mol Biol 66:315–327

    Article  PubMed  CAS  Google Scholar 

  • Liang D, Wu C, Li C, Xu C, Zhang J, Kilian A, Li X, Zhang Q, Xiong L (2006) Establishment of a patterned GAL4-VP16 transactivation system for discovering gene function in rice. Plant J 46:1059–1072

    Article  PubMed  CAS  Google Scholar 

  • Lin Z, Griffith ME, Li X, Zhu Z, Tan L, Fu Y, Zhang W, Wang X, Xie D, Sun C (2007) Origin of seed shattering in rice (Oryza sativa L.). Planta 226:11–20

    Article  PubMed  CAS  Google Scholar 

  • Liu L, White MJ, MacRae TH (1999) Transcription factors and their genes in higher plants functional domains, evolution and regulation. Eur J Biochem 262:247–257

    Article  PubMed  CAS  Google Scholar 

  • Marechal E, Hiratsuka K, Delgado J, Nairn A, Qin J, Chait BT, Chua NH (1999) Modulation of GT-1 DNA-binding activity by calcium-dependent phosphorylation. Plant Mol Biol 40:373–386

    Article  PubMed  CAS  Google Scholar 

  • Mulder N, Apweiler R (2007) InterPro and InterProScan: tools for protein sequence classification and comparison. Methods Mol Biol 396:59–70

    Article  PubMed  CAS  Google Scholar 

  • Nagano Y (2000) Several features of the GT-factor trihelix domain resemble those of the Myb DNA-binding domain. Plant Physiol 124:491–494

    Article  PubMed  CAS  Google Scholar 

  • Nagano Y, Inaba T, Furuhashi H, Sasaki Y (2001) Trihelix DNA-binding protein with specificities for two distinct cis-elements: both important for light down-regulated and dark-inducible gene expression in higher plants. J Biol Chem 276:22238–22243

    Article  PubMed  CAS  Google Scholar 

  • Ni M, Dehesh K, Tepperman JM, Quail PH (1996) GT-2: in vivo transcriptional activation activity and definition of novel twin DNA binding domains with reciprocal target sequence selectivity. Plant Cell 8:1041–1059

    Article  PubMed  CAS  Google Scholar 

  • Page RD (1996) TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358

    PubMed  CAS  Google Scholar 

  • Park HC, Kim ML, Kang YH, Jeon JM, Yoo JH, Kim MC, Park CY, Jeong JC, Moon BC, Lee JH, Yoon HW, Lee SH, Chung WS, Lim CO, Lee SY, Hong JC, Cho MJ (2004) Pathogen- and NaCl-induced expression of the SCaM-4 promoter is mediated in part by a GT-1 box that interacts with a GT-1-like transcription factor. Plant Physiol 135:2150–2161

    Article  PubMed  CAS  Google Scholar 

  • Pavlicek A, Hrda S, Flegr J (1999) Free-Tree—freeware program for construction of phylogenetic trees on the basis of distance data and bootstrap/jackknife analysis of the tree robustness. Application in the RAPD analysis of genus Frenkelia. Folia Biol (Praha) 45:97–99

    CAS  Google Scholar 

  • Riano-Pachon DM, Ruzicic S, Dreyer I, Mueller-Roeber B (2007) PlnTFDB: an integrative plant transcription factor database. BMC Bioinformatics 8:42–51

    Article  PubMed  CAS  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  PubMed  CAS  Google Scholar 

  • Schwechheimer C, Zourelidou M, Bevan MW (1998) Plant transcription factor studies. Annu Rev Plant Physiol Plant Mol Biol 49:127–150

    Article  PubMed  CAS  Google Scholar 

  • Smalle J, Kurepa J, Haegman M, Gielen J, Van Montagu M, Van Der Straeten D (1998) The trihelix DNA-binding motif in higher plants is not restricted to the transcription factors GT-1 and GT-2. Proc Natl Acad Sci USA 95:3318–3322

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  • Troll W, Lindsley J (1955) A photometric method for the determination of proline. J Biol Chem 215:655–660

    PubMed  CAS  Google Scholar 

  • Villain P, Mache R, Zhou DX (1996) The mechanism of GT element-mediated cell type-specific transcriptional control. J Biol Chem 271:32593–32598

    Article  PubMed  CAS  Google Scholar 

  • Wang R, Hong G, Han B (2004) Transcript abundance of rml1, encoding a putative GT1-like factor in rice, is up-regulated by Magnaporthe grisea and down-regulated by light. Gene 324:105–115

    Article  PubMed  CAS  Google Scholar 

  • Xie Z, Ruas P, Shen QJ (2005) Regulatory networks of the phytohormone abscisic acid. Vitam Horm 72:235–269

    Article  PubMed  CAS  Google Scholar 

  • Xiong L, Yang Y (2003) Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen-activated protein kinase. Plant Cell 15:745–759

    Article  PubMed  CAS  Google Scholar 

  • Zhou DX (1999) Regulatory mechanism of plant gene transcription by GT-elements and GT-factors. Trends Plant Sci 4:210–214

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Special Key Project of China on Functional Genomics of Major Plants and Animals, the National Program on the Development of Basic Research, the National Natural Science Foundation of China, and the Ministry of Education of China (NO 707045).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lizhong Xiong.

Additional information

Communicated by A. Tyagi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figures and Tables (DOC 924 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fang, Y., Xie, K., Hou, X. et al. Systematic analysis of GT factor family of rice reveals a novel subfamily involved in stress responses. Mol Genet Genomics 283, 157–169 (2010). https://doi.org/10.1007/s00438-009-0507-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-009-0507-x

Keywords

Navigation