Skip to main content
Log in

Anthocyanin biosynthesis genes location and expression in wheat–rye hybrids

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Studies into gene expression in a foreign background contribute toward understanding of how genes derived from different species or genera manages to co-exist in a common nucleus, on the one hand, and help to estimate possible effectiveness of wide hybridization for cultivated plant improvement, on the other hand. The aim of this study was to investigate conservation of wheat and rye expression networks, using the anthocyanin biosynthesis pathway (ABP) genes as a model system. We isolated and analyzed ABP genes encoding enzymes acting at different steps of the pathway: chalcone-flavanone isomerase (CHI), flavanone 3-hydroxylase (F3H), anthocyanidin synthase (ANS), and anthocyanidin-3-glucoside rhamnosyltransferase (3RT). The rye ABP genes locations we determined (Chi on chromosome 5RL, F3h on 2RL, Ans on 6RL, 3Rt on 5RL, the regulatory Rc—red coleoptile—gene on 4RL) were in agreement with the rearrangements established between rye and wheat chromosomes. Expression of the ABP structural genes was studied in wheat–rye chromosome addition and substitution lines. F3h activation by the Rc gene was found to be critical for the red coleoptile trait formation. It was shown that the rye regulatory Rc gene can activate the wheat target gene F3h and vice versa wheat Rc induces expression of rye F3h. However, lower level of expression of rye F3h in comparison with that of the two wheat orthologues in the wheat–rye chromosome substitution line 2R(2D) was observed. Thus, although work of the wheat and rye ABP gene systems following the formation of wheat–rye hybrids is finely coordinated, some divergence exists between rye and wheat ABP genes, affecting level of gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmed N, Maekawa M, Utsugi S, Himi E, Ablet H, Rikiishi K, Noda K (2003) Transient expression of anthocyanin in developing wheat coleoptile by maize c1 and B-peru regulatory genes for anthocyanin synthesis. Breed Sci 52:29–43

    Article  Google Scholar 

  • Ahmed N, Maekawa M, Utsugi S, Rikiishi K, Ahmad A, Noda K (2006) The wheat Rc gene for red coleoptile colour codes for a transcriptional activator of late anthocyanin biosynthesis genes. J Cereal Sci 44:54–58

    Article  CAS  Google Scholar 

  • Altchul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Google Scholar 

  • Bogdanova ED, Sarbaev AT, Makhmudova KK (2002) Resistance of common wheat to bunt. In: Proceedings of the research conference on genetics, Moscow, Russia, pp 43–44

  • Boss PK, Davies C, Robinson SP (1996a) Analysis of the expression of anthocyanin pathway genes in developing Vitis vinifera L. cv Shiraz grape berries and the implications for pathway regulation. Plant Physiol 111:1059–1066

    PubMed  CAS  Google Scholar 

  • Boss PK, Davies C, Robinson SP (1996b) Expression of anthocyanin biosynthesis genes in red and white grapes. Plant Mol Biol 32:565–569

    Article  PubMed  CAS  Google Scholar 

  • Bottley A, Xia GM, Koebner RM (2006) Homoeologous gene silencing in hexaploid wheat. Plant J 47:897–906

    Article  PubMed  CAS  Google Scholar 

  • Bovy A, de Vos R, Kemper M, Schijlen E, Almenar Pertejo M, Muir S, Collins G, Robinson S, Verhoeyen M, Hughes S, Santos-Buelga C, van Tunen A (2002) High-flavonol tomatoes resulting from the heterologous expression of the maize transcription factor genes LC and C1. Plant Cell 14:2509–2526

    Article  PubMed  CAS  Google Scholar 

  • Butelli E, Titta L, Giorgio M, Mock HP, Matros A, Peterek S, Schijlen EG, Hall RD, Bovy AG, Luo J, Martin C (2008) Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors. Nat Biotechnol 26:1301–1308

    Article  PubMed  CAS  Google Scholar 

  • Christie PJ, Alfenito MR, Walbot V (1994) Impact of low temperature stress on general phenylpropanoid and anthocyanin pathways: enhancement of transcript abundance and anthocyanin pigmentation in maize seedlings. Planta 194:541–549

    Article  CAS  Google Scholar 

  • Corpet F (1988) Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res 16:10881–10890

    Article  PubMed  CAS  Google Scholar 

  • De Vries JN, Sybenga J (1984) Chromosomal location of 17 monogenically inherited morphological markers in rye (Secale cereale L.) using translocation tester set. Z Pflanzenzücht 92:117–139

    Google Scholar 

  • Deboo GB, Albertsen MC, Taylor LP (1995) Flavanone 3-hydroxylase transcripts and flavonol accumulation are temporally coordinate in maize anthers. Plant J 7:703–713

    Article  PubMed  CAS  Google Scholar 

  • Devos KM, Atkinson MD, Chinoy CN, Francis HA, Harcourt RL, Koebner RMD, Liu CJ, Masojc P, Xie DX, Gale MD (1993) Chromosomal rearrangements in the rye genome relative to that of wheat. Theor Appl Genet 85:673–680

    Article  CAS  Google Scholar 

  • Dobrovolskaya OB, Arbuzova VS, Lohwasser U, Röder MS, Börner A (2006) Microsatellite mapping of complementary genes for purple grain colour in bread wheat (Triticum aestivum L.). Euphytica 150:355–364

    Article  CAS  Google Scholar 

  • Dorofeev VF, Korovina ON (1979) Flora of cultivated plants. Kolos, Leningrad

    Google Scholar 

  • Driscoll CJ, Sears ER (1971) Individual addition of the chromosomes of ‘Imperial’ rye to wheat. Agron Abstr 6

  • Druka A, Kudrna D, Rostoks N, Brueggeman R, Wettstein D, Kleinhofs A (2003) Chalcone isomerase gene from rice (Oryza sativa) and barley (Hordeum vulgare): physical, genetic and mutation mapping. Gene 302:171–178

    Article  PubMed  CAS  Google Scholar 

  • Ganal M, Röder MS (2007) Microsatellite and SNP markers in wheat breeding. In: Varshney RK, Tuberosa R (eds) Genomics-assisted crop improvement, vol. 2: genomics applications in crops. Springer, The Netherlands, pp 1–24

    Chapter  Google Scholar 

  • Giovanini MP, Puthoff DP, Nemacheck JA, Mittapalli O, Saltzmann KD, Ohm HW, Shukle RH, Williams CE (2006) Gene-for-gene defense of wheat against the Hessian fly lacks a classical oxidative burst. Mol Plant Microbe Interact 19:1023–1033

    Article  PubMed  CAS  Google Scholar 

  • Gong Z, Yamazaki M, Sugiyama M, Tanaka Y, Saito K (1997) Cloning and molecular analysis of structural genes involved in anthocyanin biosynthesis and expressed in a forma-specific manner in Perilla frutescens. Plant Mol Biol 35:915–927

    Article  PubMed  CAS  Google Scholar 

  • Gould KS (2004) Nature’s swiss army knife: the diverse protective roles of anthocyanins in leaves. J Biomed Biotech 5:314–320

    Article  Google Scholar 

  • Haussühl K, Rohde W, Weissenböck G (1996) Expression of chalcone synthase genes in coleoptiles and primary leaves of Secale cereale L after induction by UV radiation: evidence for a UV-protective role of the coleoptile. Bot Acta 109:229–238

    Google Scholar 

  • Himi E, Noda K (2004) Isolation and location of three homoeologous dihydroflavonol-4-reductase (DFR) genes of wheat and their tissue-dependent expression. J Exp Bot 55:365–375

    Article  PubMed  CAS  Google Scholar 

  • Himi E, Nisar A, Noda K (2005) Colour genes (R and Rc) for grain and coleoptile upregulate flavonoid biosynthesis genes in wheat. Genome 48:747–754

    Article  PubMed  CAS  Google Scholar 

  • Himi E, Osaka T, Noda K (2006) Isolation and characterization of wheat ANS genes. GenBank 2006. http://www.ncbi.nlm.nih.gov/sites/entrez?term=himi%20osaka%20noda&cmd=Search&db=nuccore&QueryKey=4

  • Izdebski R (1992) Utilization of rye genetic resources—initial material selection. Hereditas 116:179–185

    Article  Google Scholar 

  • Jaakola L, Määttä K, Pirtillä AM, Törrönen R, Kärenlampi S, Hohtola A (2002) Expression of genes involved in anthocyanin biosynthesis in relation to anthocyanin, proanthocyanidin, and flavonol levels during bilberry fruit development. Plant Physiol 130:729–739

    Article  PubMed  CAS  Google Scholar 

  • Kashkush K, Feldman M, Levy AA (2002) Gene loss, silencing and activation in a newly synthesized wheat allotetraploid. Genetics 160:1651–1659

    PubMed  CAS  Google Scholar 

  • Khlestkina EK, Pestsova EG, Röder MS, Börner A (2002a) Molecular mapping, phenotypic expression and geographical distribution of genes determining anthocyanin pigmentation of coleoptiles in wheat (Triticum aestivum L.). Theor Appl Genet 104:632–637

    Article  PubMed  CAS  Google Scholar 

  • Khlestkina EK, Pestsova EG, Salina EA, Röder MS, Arbuzova VS, Koval SF, Börner A (2002b) Molecular mapping and tagging of wheat genes using RAPD, STS and SSR markers. Cell Mol Biol Lett 7:795–802

    PubMed  CAS  Google Scholar 

  • Khlestkina EK, Than MH, Pestsova EG, Roder MS, Malyshev SV, Korzun V, Borner A (2004) Mapping of 99 new microsatellite-derived loci in rye (Secale cereale L.) including 39 expressed sequence tags. Theor Appl Genet 109:725–732

    Article  PubMed  CAS  Google Scholar 

  • Khlestkina EK, Röder MS, Pshenichnikova TA, Simonov AV, Salina EA, Börner A (2008a) Genes for anthocyanin pigmentation in wheat: review and microsatellite-based mapping. In: Verrity JF, Abbington LE (eds) Chromosome mapping research developments. NOVA Science Publishers, Inc., USA, pp 155–175

    Google Scholar 

  • Khlestkina EK, Röder MS, Salina EA (2008b) Relationship between homoeologous regulatory and structural genes in allopolyploid genome—a case study in bread wheat. BMC Plant Biol 8:88

    Article  PubMed  CAS  Google Scholar 

  • Khlestkina EK, Pshenichnikova TA, Röder MS, Börner A (2009a) Clustering anthocyanin pigmentation genes in wheat group 7 chromosomes. Cereal Res Commun 37:391–398

    Article  CAS  Google Scholar 

  • Khlestkina EK, Röder MS, Börner A (2009b) Mapping genes controlling anthocyanin pigmentation on the glume and pericarp in tetraploid wheat (Triticum durum L.). Euphytica 165. doi:10.1007/s10681-009-9994-4

  • Khlestkina EK, Röder MS, Pshenichnikova TA, Börner A (2009c) Functional diversity at Rc (red coleoptile) locus in wheat (Triticum aestivum L.). Mol Breed. doi:10.1007/s11032-009-9312-9

  • Korzun V, Malyshev S, Voylokov AV, Börner A (2001) A genetic map of rye (Secale cereale L.) combining RFLP, isozyme, protein, microsatellite and gene loci. Theor Appl Genet 102:709–717

    Article  CAS  Google Scholar 

  • Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163

    Article  PubMed  CAS  Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg I (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  PubMed  CAS  Google Scholar 

  • Li HP, Liao YC (2003) Isolation and characterization of two closely linked phenylalanine ammonia-lyase genes from wheat. Yi Chuan Xue Bao 30:907–912

    PubMed  CAS  Google Scholar 

  • Li WL, Faris JD, Chittoor JM, Leach JE, Hulbert SH, Liu DJ, Chen PD, Gill BS (1999) Genomic mapping of defense response genes in wheat. Theor Appl Genet 98:226–233

    Article  CAS  Google Scholar 

  • Liao YC, Li HP, Kreuzaler F, Fischer R (1996) Nucleotide sequence of one of two tandem genes encoding phenylalanine ammonia-lyase in Triticum aestivum. Plant Physiol 112:1398

    Google Scholar 

  • Malyshev S, Korzun V, Voylokov A, Smirnov V, Börner A (2001) Linkage mapping of mutant loci in rye (Secale cereale L.). Theor Appl Genet 103:70–74

    Article  CAS  Google Scholar 

  • Martin C, Prescott A, Mackay S, Bartlett J, Vrijlandt E (1991) Control of anthocyanin biosynthesis in flowers of Antirrhinum majus. Plant J 1:37–49

    Article  PubMed  CAS  Google Scholar 

  • McIntosh RA, Yamazak Y, Dubcovsky J, Rogers J, Morris C, Somers DJ, Appels R, Devos KM (2008) Catalogue of gene symbols for wheat. http://www.grs.nig.ac.jp/wheat/komugi/genes/

  • Melz G, Thiele V (1990) Chromosome locations of genes controlling ‘purple leaf base’ in rye and wheat. Euphytica 49:155–159

    Article  Google Scholar 

  • Miller TE (1984) The homoeologous relationship between the chromosomes of rye and wheat. Current status. Can J Genet Cytol 26:578–589

    Google Scholar 

  • Munkvold JD, Greene RA, Bermudez-Kandianis CE, La Rota CM, Edwards H, Sorrells SF, Dake T, Benscher D, Kantety R, Linkiewicz AM, Dubcovsky J, Akhunov ED, Dvorák J, Miftahudin, Gustafson JP, Pathan MS, Nguyen HT, Matthews DE, Chao S, Lazo GR, Hummel DD, Anderson OD, Anderson JA, Gonzalez-Hernandez JL, Peng JH, Lapitan N, Qi LL, Echalier B, Gill BS, Hossain KG, Kalavacharla V, Kianian SF, Sandhu D, Erayman M, Gill KS, McGuire PE, Qualset CO, Sorrells ME (2004) Group 3 chromosome bin maps of wheat and their relationship to rice chromosome 1. Genetics 168:639–650

  • Pelletier MK, Shirley BW (1996) Analysis of flavanone 3-hydroxylase in Arabidopsis seedlings. Coordinate regulation with chalcone synthase and chalcone isomerase. Plant Physiol 111:339–345

    Article  PubMed  CAS  Google Scholar 

  • Pozolotina VN, Molchanova IV, Karavaeva EN, Mihkaylovskaya LN, Antonova EV, Karimullina EM (2007) Analysis of current state of terrestrial ecosystems in the East-Ural Radioactive Trace. The issues of the Radiation Safety (Special Issue ‘The East Ural Radioactive Trace Marks Its 50 Year Anniversary’):32–44 (in Russian)

  • Quattrocchio F, Wing JF, Leppen HTC, Mol JNM, Koes RE (1993) Regulatory genes controlling anthocyanin pigmentation are functionally conserved among plant species and have distinct sets of target genes. Plant Cell 5:1497–1512

    Article  PubMed  CAS  Google Scholar 

  • Quattrocchio F, Wing JF, van der Woude K, Mol JN, Koes R (1998) Analysis of bHLH and MYB domain proteins: species-specific regulatory differences are caused by divergent evolution of target anthocyanin genes. Plant J 13:475–488

    Article  PubMed  CAS  Google Scholar 

  • Rychlik W, Rhoads RE (1989) A computer program for choosing optimal oligonucleotides for filter hybridization, sequencing and in vitro amplification of DNA. Nucleic Acids Res 17:8543–8551

    Article  PubMed  CAS  Google Scholar 

  • Silkova OG, Dobrovol’skaia OB, Dubovets NI, Adonina IG, Kravtsova LA, Roder MS, Salina EA, Shchapova AI, Shumny VK (2006) Production of wheat-rye substitution lines and identification of chromosome composition of karyotypes using C-banding, GISH, and SSR markers. Rus J Genet 42:645–653

    Article  CAS  Google Scholar 

  • Stracke R, Ishihara H, Huep G, Barsch A, Mehrtens F, Niehaus K, Weisshaar B (2007) Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling. Plant J 50:660–677

    Article  PubMed  CAS  Google Scholar 

  • Taylor LP, Briggs WR (1990) Genetic regulation and photocontrol of anthocyanin accumulation in maize seedlings. Plant Cell 2:115–127

    Article  PubMed  CAS  Google Scholar 

  • Varshney RK, Beier U, Khlestkina EK, Kota R, Korzun V, Graner A, Börner A (2007) Single nucleotide polymorphisms in rye (Secale cereale L.): discovery, frequency, and applications for genome mapping and diversity studies. Theor Appl Genet 114:1105–1116

    Article  PubMed  CAS  Google Scholar 

  • Winkel-Shirley B (2001) It takes garden. How work on diverse plant species has contributed to an understanding of flavonoid metabolism. Plant physiol 127:1399–1404

    Article  PubMed  CAS  Google Scholar 

  • Yang G, Li B, Gao J, Liu J, Zhao X, Zheng Q, Tong Y, Li Z (2004) Cloning and expression of two chalcone synthase and a flavonoid 3’5’-Hydroxylase 3’-end cDNAs from developing seeds of blue-grained wheat involved in anthocyanin biosynthetic pathway. J Integr Plant Biol (Acta Bot Sin) 46:588–594

    CAS  Google Scholar 

  • Zeller FJ, Koller OL (1981) Identification of 4A/7R and 7B/4R wheat-rye chromosome translocation. Theor Appl Genet 59:33–37

    Google Scholar 

Download references

Acknowledgments

We thank Dr. A. Börner (IPK-Gatersleben, Germany) and Dr. O. G. Silkova (ICG, Novosibirsk, Russia) for supplying the seeds of wheat–rye addition lines and wheat–rye chromosome substitution line, respectively. We also thank the Russian foundation for basic research (08-04-00368-a), the Government of the Russian Federation (Contract No 02.512.11.2256), the Presidium of the Russian Academy of Sciences, SB RAS (Integration Project 129), the Russian Science support foundation, and grant of the President of the Russian Federation (MK-566.2007.4) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena K. Khlestkina.

Additional information

Communicated by P. Westhoff.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

Cluster analysis performed using MEGA v3.1 software for partial nucleotide sequences of Chi, F3h, Ans, and 3Rt determined in this study (underlined) and those of other species deposited in the GenBank (http://www.ncbi.nlm.nih.gov/Database/). For species with more than one Chi, F3h, or Ans gene, each copy is identified by a gene copy name. GenBank accession numbers are given to the right (PDF 82 kb)

Supplementary Fig. 2

qRT-PCR analysis of rye F3h expression in wheat–rye chromosome substitution line ‘L 2R(2D)’ and rye ‘Onokhoiskaya’. *, **the difference is significant at P > 0.95 and P > 0.99, respectively (PDF 12 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khlestkina, E.K., Tereshchenko, O.Y. & Salina, E.A. Anthocyanin biosynthesis genes location and expression in wheat–rye hybrids. Mol Genet Genomics 282, 475–485 (2009). https://doi.org/10.1007/s00438-009-0479-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-009-0479-x

Keywords

Navigation