Skip to main content
Log in

Helix 69 in 23S rRNA modulates decoding by wild type and suppressor tRNAs

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Helix 69 of 23S rRNA forms one of the major inter-subunit bridges of the 70S ribosome and interacts with A- and P-site tRNAs and translation factors. Despite the proximity of h69 to the decoding center and tRNAs, the contribution of h69 to the tRNA selection process is unclear: previous genetic analyses have shown that h69 mutations increase frameshifting and readthrough of stop codons. However, a complete deletion of h69 does not affect the selection of cognate tRNAs in vitro. To address these discrepancies, the in vivo effects of a range of single- and multi-base h69 mutations in Escherichia coli 23S rRNA on various translation errors have been determined. While a majority of the h69 mutations examined here affected readthrough of stop codons and frameshifting, the ΔA1916 single base deletion mutation uniquely influenced missense decoding. Different h69 mutants had either increased or decreased levels of stop codon readthrough. The h69 mutations that decreased UGA readthrough also decreased UGA reading by a mutant, near-cognate tRNATrp carrying a G24A substitution in the D arm, but had far less effect on UGA reading by a suppressor tRNA with a complementary anticodon. These results suggest that h69 interactions with release factors contribute significantly to termination efficiency and that interaction with the D arm of A-site tRNA is important for discrimination between cognate and near-cognate tRNAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ali IK, Lancaster L, Feinberg J, Joseph S, Noller HF (2006) Deletion of a conserved, central ribosomal intersubunit RNA bridge. Mol Cell 23:865–874

    Article  PubMed  CAS  Google Scholar 

  • Andersson DI, Bohman K, Isaksson LA, Kurland CG (1982) Translation rates and misreading characteristics of rpsD mutants in Escherichia coli. Mol Gen Genet 187:467–472

    Article  PubMed  CAS  Google Scholar 

  • Asai T, Zaporojets D, Squires C, Squires CL (1999a) An Escherichia coli strain with all chromosomal rRNA operons inactivated: complete exchange of rRNA genes between bacteria. Proc Natl Acad Sci USA 96:1971–1976

    Article  PubMed  CAS  Google Scholar 

  • Asai T, Condon C, Voulgaris J, Zaporojets D, Shen B, Al-Omar M, Squires C, Squires CL (1999b) Construction and initial characterization of Escherichia coli strains with few or no intact chromosomal rRNA operons. J Bacteriol 181:3803–3809

    PubMed  CAS  Google Scholar 

  • Atkins JF, Ryce S (1974) UGA and non-triplet suppressor reading of the genetic code. Nature 249:527–530

    Article  PubMed  CAS  Google Scholar 

  • Borovinskaya MA, Pai RD, Zhang W, Schuwirth BS, Holton JM, Hirokawa G, Kaji H, Kaji A, Cate JH (2007) Structural basis for aminoglycoside inhibition of bacterial ribosome recycling. Nat Struct Mol Biol 14:727–732

    Article  PubMed  CAS  Google Scholar 

  • Cochella L, Green R (2005) An active role for tRNA in decoding beyond codon: anticodon pairing. Science 308:1178–1180

    Article  PubMed  CAS  Google Scholar 

  • Cupples CG, Miller JH, Huber RE (1990) Determination of the roles of Glu-461 in beta-galactosidase (Escherichia coli) using site-specific mutagenesis. J Biol Chem 265:5512–5518

    PubMed  CAS  Google Scholar 

  • Dallas A, Noller HF (2001) Interaction of translation initiation factor 3 with the 30S ribosomal subunit. Mol Cell 8:855–864

    Article  PubMed  CAS  Google Scholar 

  • Dinçbas-Renqvist V, Engström A, Mora L, Heurgué-Hamard V, Buckingham R, Ehrenberg M (2000) A post-translational modification in the GGQ motif of RF2 from Escherichia coli stimulates termination of translation. EMBO J 19:6900–6907

    Article  PubMed  Google Scholar 

  • Ejby M, Sørensen MA, Pedersen S (2007) Pseudouridylation of helix 69 of 23S rRNA is necessary for an effective translation termination. Proc Natl Acad Sci USA 104:19410–19415

    Article  PubMed  CAS  Google Scholar 

  • Frank J, Verschoor A, Li Y, Zhu J, Lata RK, Radermacher M, Penczek P, Grassucci R, Agrawal RK, Srivastava S (1995) A model of the translational apparatus based on a three-dimensional reconstruction of the Escherichia coli ribosome. Biochem Cell Biol 73:757–765

    Article  PubMed  CAS  Google Scholar 

  • Gao H, Sengupta J, Valle M, Korostelev A, Eswar N, Stagg SM, Van Roey P, Agrawal RK, Harvey SC, Sali A, Chapman MS, Frank J (2003) Study of the structural dynamics of the E. coli 70S ribosome using real-space refinement. Cell 113:789–801

    Article  PubMed  CAS  Google Scholar 

  • Gao N, Zavialov AV, Li W, Sengupta J, Valle M, Gursky RP, Ehrenberg M, Frank J (2005) Mechanism for the disassembly of the posttermination complex inferred from cryo-EM studies. Mol Cell 18:663–674

    Article  PubMed  CAS  Google Scholar 

  • Gregory ST, Brunelli CA, Lodmell JS, O’Connor M, Dahlberg AE (1998) Genetic selection of rRNA mutations. Methods Mol Biol 77:271–281

    PubMed  CAS  Google Scholar 

  • Higuchi R, Krummel B, Saiki RK (1988) A general method of in vitro preparation and specific mutagenesis of DNA fragments: study of protein and DNA interactions. Nucleic Acids Res 16:7351–7367

    Article  PubMed  CAS  Google Scholar 

  • Hirabayashi N, Sato NS, Suzuki T (2006) Conserved loop sequence of helix 69 in Escherichia coli 23 S rRNA is involved in A-site tRNA binding and translational fidelity. J Biol Chem 281:17203–17211

    Article  PubMed  CAS  Google Scholar 

  • Hirsh D (1971) Tryptophan transfer RNA as the UGA suppressor. J Mol Biol 58:439–458

    Article  PubMed  CAS  Google Scholar 

  • Johansen SK, Maus CE, Plikaytis BB, Douthwaite S (2006) Capreomycin binds across the ribosomal subunit interface using tlyA-encoded 2′-O-methylations in 16S and 23S rRNAs. Mol Cell 23:173–182

    Article  PubMed  CAS  Google Scholar 

  • Kipper K, Hetényi C, Sild S, Remme J, Liiv A (2009) Ribosomal intersubunit bridge B2a is involved in factor-dependent translation initiation and translational processivity. J Mol Biol 385:405–422

    Article  PubMed  CAS  Google Scholar 

  • Klaholz BP, Pape T, Zavialov AV, Myasnikov AG, Orlova EV, Vestergaard B, Ehrenberg M, van Heel M (2003) Structure of the Escherichia coli ribosomal termination complex with release factor 2. Nature 421:90–94

    Article  PubMed  CAS  Google Scholar 

  • Klaholz BP, Myasnikov AG, Van Heel M (2004) Visualization of release factor 3 on the ribosome during termination of protein synthesis. Nature 427:862–865

    Article  PubMed  CAS  Google Scholar 

  • Korostelev A, Trakhanov S, Laurberg M, Noller HF (2006) Crystal structure of a 70S ribosome-tRNA complex reveals functional interactions and rearrangements. Cell 126:1065–1077

    Article  PubMed  CAS  Google Scholar 

  • Laurberg M, Asahara H, Korostelev A, Zhu J, Trakhanov S, Noller HF (2008) Structural basis for translation termination on the 70S ribosome. Nature 454:852–857

    Article  PubMed  CAS  Google Scholar 

  • Liiv A, O’Connor M (2006) Mutations in the intersubunit bridge regions of 23S rRNA. J Biol Chem 281:29850–29862

    Article  PubMed  CAS  Google Scholar 

  • Liiv A, Karitkina D, Maivali U, Remme J (2005) Analysis of the function of E. coli 23S rRNA helix-loop 69 by mutagenesis. BMC Mol Biol 6:18

    Article  PubMed  CAS  Google Scholar 

  • Maivali U, Remme J (2004) Definition of bases in 23S rRNA essential for ribosomal subunit association. RNA 10:600–604

    Article  PubMed  CAS  Google Scholar 

  • Marrero P, Cabanas MJ, Modolell J (1980) Induction of translational errors (misreading) by tuberactinomycins and capreomycins. Biochem Biophys Res Commun 97:1042–1047

    Article  Google Scholar 

  • Matsumura K, Ito K, Kawazu Y, Mikuni O, Nakamura Y (1996) Suppression of temperature-sensitive defects of polypeptide release factors RF-1 and RF-2 by mutations or by an excess of RF-3 in Escherichia coli. J Mol Biol 258:588–599

    Article  PubMed  CAS  Google Scholar 

  • Miller JH (1991) A short course in bacterial genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Mitchell P, Osswald M, Brimacombe R (1992) Identification of intermolecular RNA cross-links at the subunit interface of the Escherichia coli ribosome. Biochemistry 31:3004–3011

    Article  PubMed  CAS  Google Scholar 

  • Monshupanee T, Gregory ST, Douthwaite S, Chungjatupornchai W, Dahlberg AE (2008) Mutations in conserved helix 69 of 23S rRNA of Thermus thermophilus that affect capreomycin resistance but not posttranscriptional modifications. J Bacteriol 190:7754–7776

    Article  PubMed  CAS  Google Scholar 

  • Nilsson M, Rydén-Aulin M (2003) Glutamine is incorporated at the nonsense codons UAG and UAA in a suppressor-free Escherichia coli strain. Biochim Biophys Acta 1627:1–6

    PubMed  CAS  Google Scholar 

  • O’Connor M (2007) Interaction between the ribosomal subunits: 16S rRNA suppressors of the lethal DeltaA1916 mutation in the 23S rRNA of Escherichia coli. Mol Genet Genomics 278:307–315

    Article  PubMed  CAS  Google Scholar 

  • O’Connor M, Dahlberg AE (1995) The involvement of two distinct regions of 23 S ribosomal RNA in tRNA selection. J Mol Biol 254:838–847

    Article  PubMed  Google Scholar 

  • O’Connor M, Thomas CL, Zimmermann RA, Dahlberg AE (1997) Decoding fidelity at the ribosomal A and P sites: influence of mutations in three different regions of the decoding domain in 16S rRNA. Nucleic Acids Res 25:1185–1193

    Article  PubMed  Google Scholar 

  • O’Connor M, Gregory ST, Dahlberg AE (2004) Multiple defects in translation associated with altered ribosomal protein L4. Nucleic Acids Res 32:5750–5756

    Article  PubMed  CAS  Google Scholar 

  • Raftery LA, Egan JB, Cline SW, Yarus M (1984) Defined set of cloned termination suppressors: in vivo activity of isogenetic UAG, UAA, and UGA suppressor tRNAs. J Bacteriol 158:849–859

    PubMed  CAS  Google Scholar 

  • Rawat U, Gao H, Zavialov A, Gursky R, Ehrenberg M, Frank J (2006) Interactions of the release factor RF1 with the ribosome as revealed by cryo-EM. J Mol Biol 357:1144–1153

    Article  PubMed  CAS  Google Scholar 

  • Raychaudhuri S, Conrad J, Hall BG, Ofengand J (1998) A pseudouridine synthase required for the formation of two universally conserved pseudouridines in ribosomal RNA is essential for normal growth of Escherichia coli. RNA 4:1407–1417

    Article  PubMed  CAS  Google Scholar 

  • Sambrook JF, Fan DP, Brenner S (1967) A strong suppressor specific for UGA. Nature 214:452–453

    Article  PubMed  CAS  Google Scholar 

  • Schuette JC, Murphy FV 4th, Kelley AC, Weir JR, Giesebrecht J, Connell SR, Loerke J, Mielke T, Zhang W, Penczek PA, Ramakrishnan V, Spahn CM (2009) GTPase activation of elongation factor EF-Tu by the ribosome during decoding. EMBO J 28:755–765

    Article  PubMed  CAS  Google Scholar 

  • Schuwirth BS, Borovinskaya MA, Hau CW, Zhang W, Vila-Sanjurjo A, Holton JM, Cate JH (2005) Structures of the bacterial ribosome at 3.5 A resolution. Science 310:827–834

    Article  PubMed  CAS  Google Scholar 

  • Selmer M, Dunham CM, Murphy FV 4th, Weixlbaumer A, Petry S, Kelley AC, Weir JR, Ramakrishnan V (2006) Structure of the 70S ribosome complexed with mRNA and tRNA. Science 313:1935–1942

    Article  PubMed  CAS  Google Scholar 

  • Stoker NG, Fairweather NF, Spratt BG (1982) Versatile low-copy-number plasmid vectors for cloning in Escherichia coli. Gene 18:335–341

    Article  PubMed  CAS  Google Scholar 

  • Strigini P, Gorini L (1970) Ribosomal mutations affecting efficiency of amber suppression. J Mol Biol 47:517–530

    Article  PubMed  CAS  Google Scholar 

  • Toth MJ, Murgola EJ, Schimmel P (1988) Evidence for a unique first position codon-anticodon mismatch in vivo. J Mol Biol 201:451–454

    Article  PubMed  CAS  Google Scholar 

  • Vila-Sanjurjo A, Squires CL, Dahlberg AE (1999) Isolation of kasugamycin resistant mutants in the 16 S ribosomal RNA of Escherichia coli. J Mol Biol 293:1–8

    Article  PubMed  CAS  Google Scholar 

  • Weiss RB, Dunn DM, Atkins JF, Gesteland RF (1987) Slippery runs, shifty stops, backward steps, and forward hops: −2, −1, +1, +2, +5, and +6 ribosomal frameshifting. Cold Spring Harb Symp Quant Biol 52:687–693

    PubMed  CAS  Google Scholar 

  • Weixlbaumer A, Jin H, Neubauer C, Voorhees RM, Petry S, Kelley AC, Ramakrishnan V (2008) Insights into translational termination from the structure of RF2 bound to the ribosome. Science 322:953–956

    Article  PubMed  CAS  Google Scholar 

  • Wilson DN, Schluenzen F, Harms JM, Yoshida T, Ohkubo T, Albrecht R, Buerger J, Kobayashi Y, Fucini P (2005) X-ray crystallography study on ribosome recycling: the mechanism of binding and action of RRF on the 50S ribosomal subunit. EMBO J 24:251–260

    Article  PubMed  CAS  Google Scholar 

  • Yoshida H, Yamamoto H, Uchiumi T, Wada A (2004) RMF inactivates ribosomes by covering the peptidyl transferase centre and entrance of peptide exit tunnel. Genes Cells 9:271–278

    Article  PubMed  CAS  Google Scholar 

  • Yusupov MM, Yusupova GZ, Baucom A, Lieberman K, Earnest TN, Cate JH, Noller HF (2001) Crystal structure of the ribosome at 5.5 A resolution. Science 292:883–896

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I am grateful to Dr. James Curran, Wake Forest University for providing the trpT mutant plasmids, to Drs. Catherine Squires and Selwyn Quan for supplying the MG1655-derived Δ7 prrn strain and to Dr. Qing Sun for constructing some of the lacZ plasmids. Thanks are due to Drs. Steven Gregory and Aivar Liiv for their comments on the manuscript. This work was supported by grants # MCB 0343942 and MCB0745025 from the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael O’Connor.

Additional information

Communicated by S. Hohmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

O’Connor, M. Helix 69 in 23S rRNA modulates decoding by wild type and suppressor tRNAs. Mol Genet Genomics 282, 371–380 (2009). https://doi.org/10.1007/s00438-009-0470-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-009-0470-6

Keywords

Navigation